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Abstract

This paper descibes version 2.0 ofjerasure, a library in C that supports erasure coding in storage applications.
In this paper, we describe both the techniques and algorithms, plus the interface to the code. Thus, this serves as a
quasi-tutorial and a programmer’s guide.

Version 2.0 does not change the interface ofjerasure 1.2. What it does is change the software for doing the Galois
Field back-end. It now uses GF-Complete, which is much more flexible and powerful than the previous Galois Field
arithmetic library. In particular, it leverages Intel SIMDinstructions so that Reed-Solomon coding may be blazingly
fast.

In order to usejerasure, you must first download and install GF-Complete. Both libraries are posted and main-
tained at bitbucket.com.

If You Use This Library or Document

Please send me an email to let me know how it goes. One of the ways in which I am evaluated both internally and
externally is by the impact of my work, and if you have found this library and/or this document useful, I would like to
be able to document it. Please send mail toplank@cs.utk.edu.

The library itself is protected by the New BSD License. It is free to use and modify within the bounds of that
License. None of the techniques implemented in this libraryhave been patented.

∗plank@cs.utk.edu , 865-974-4397, This material is based upon work supported by the National Science Foundation under grants CNS-
0615221 and CNS-1034216. Kevin Greenan works at Box, Inc. inLos Altos, CA.
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Finding the Code

Please download the code from:

https://bitbucket.org/jimplank/jerasure .

Before you compilejerasure, you must download, compile and install GF-Complete. That is available from

https://bitbucket.org/jimplank/gf-complete .

Both libraries useautoconf, which means that you go through the following steps from themain directory:

UNIX> ./configure
UNIX> make
UNIX> sudo make install

The example programs are in the directoryExamples. The source code is in the directorysrc.

History of Jerasure

This is the third major revision ofjerasure. Jerasure’s revision history is as follows:

• Revision 1.0: James S. Plank, September, 2007 [Pla07b].

• Revision 1.2: James S. Plank, Scott Simmerman and CatherineD. Schuman. August, 2008 [PSS08]. This
revision added Blaum-Roth and Liber8tion coding to the library, an example encoder and decoder, and beefed
up examples.

• Revision 1.2A: This is identical to revision 1.2, except it uses the new BSD license instead of the Gnu LGPL
license. It is available as atar file in http://web.eecs.utk.edu/ ˜ plank/plank/papers/Jerasure-1.2A.tar .

• Revision 2.0: James S. Plank and Kevin Greenan, January, 2014 [PG14]. This revision changes the back end
implementation of Galois Fields to GF-Complete (https://bitbucket.org/jimplank/gf-complete ), which
allows jerasure to leverage SIMD operations for extremely fast encoding anddecoding. All of the examples
have been updated, and a few examples have been added to demonstrate how one may tweak the underlying
Galois Field to exploit further features of GF-Complete.
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1 Introduction

Erasure coding for storage applications is growing in importance as storage systems grow in size and complexity. This
paper describesjerasure, a library in C that supports erasure coding applications.Jerasurehas been designed to be
modular, fast and flexible. It is our hope that storage designers and programmers will findjerasure to be a convenient
tool to add fault tolerance to their storage systems.

Jerasuresupports ahorizontalmode of erasure codes. We assume that we havek devices that hold data. To that,
we will addm devices whose contents will be calculated from the originalk devices. If the erasure code is aMaximum
Distance Separable (MDS)code, then the entire system will be able to tolerate the lossof anym devices.

(a) Encoding. (b) Decoding.

Figure 1: The act ofencodingtakes the contents ofk data devices and encodes them onm coding devices. The act
of decodingtakes some subset of the collection of(k + m) total devices and from them recalcalates the originalk

devices of data.

As depicted in Figure 1, the act of encoding takes the original k data devices, and from them calculatesm coding
devices. The act of decoding takes the collection of(k + m) devices with erasures, and from the surviving devices
recalculates the contents of the originalk data devices.

Most codes have a third parameterw, which is theword size. The description of a code views each device as
havingw bits worth of data. The data devices are denotedD0 throughDk−1 and the coding devices are denotedC0

throughCm−1. Each deviceDi or Cj holdsw bits, denoteddi,0, . . . di,w−1 andci,0, . . . ci,w−1. In reality of course,
devices hold megabytes of data. To map the description of a code to its realization in a real system, we do one of two
things:

1. Whenw ∈ {8, 16, 32}, we can consider each collection ofw bits to be a byte, short word or word respectively.
Consider the case whenw = 8. We may view each device to holdB bytes. The first byte of each coding device
will be encoded with the first byte of each data device. The second byte of each coding device will be encoded
with the second byte of each data device. And so on. This is howStandard Reed-Solomon coding works, and it
should be clear how it works whenw = 16 orw = 32.

2. Most other codes work by defining each coding bitci,j to be the bitwise exclusive-or (XOR) of some subset of
the other bits. To implement these codes in a real system, we assume that the device is composed ofw packets
of equal size. Now each packet is calculated to be the bitwiseexclusive-or of some subset of the other packets.
In this way, we can take advantage of the fact that we can perform XOR operations on whole computer words
rather than on bits.

The process is illustrated in Figure 2. In this figure, we assume thatk = 4, m = 2 andw = 4. Suppose that a
code is defined such that coding bitc1,0 is goverened by the equation:

c1,0 = d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ d3,3,
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where⊕ is the XOR operation. Figure 2 shows how the coding packet corresponding toc1,0 is calculated from
the data packets corresponding tod0,0, d1,1, d2,2 andd3,3. We call the size of each packet thepacket size, and
the size ofw packets to be thecoding block size. The packetsize must be a multiple of the computer’s word size
so obviously, the coding block size will be a multiple ofw ∗ packetsize.

Figure 2: Although codes are described on systems ofw bits, their implementation employspacketsthat are much
larger. Each packet in the implementation corresponds to a bit of the description. This figure is showing how the
equationc1,0 = d0,0 ⊕ d1,1 ⊕ d2,2 ⊕ d3,3 is realized in an implementation.

2 The Modules of the Library

This library is broken into five modules, each with its own header file and implementation in C. Typically, when using
a code, one only needs three of these modules:galois, jerasure and one of the others. The modules are:

1. galois.h/galois.c: These are wrappers around GF-Complete so thatjerasure’s interface from version 1.2 is
maintained.

2. jerasure.h/jerasure.c: These are kernel routines that are common to most erasure codes. They do not depend
on any module other thangalois. They include support for matrix-based coding and decoding, bit-matrix-based
coding and decoding, conversion of bit-matrices to schedules, matrix and bit-matrix inversion.

3. reed sol.h/reedsol.c: These are procedures for creating generator matrices for systematic Reed-Solomon cod-
ing [RS60, Pla97, PD05]. They also include the optimized version of Reed-Solomon encoding for RAID-6 as
discussed in [Anv07].

4. cauchy.h/cauchy.c: These are procedures for performing Cauchy Reed-Solomon coding [BKK+95, PX06],
which employs a different matrix construction than classicReed-Solomon coding. We include support for
creating optimal Cauchy generator matrices for RAID-6, andfor creating generator matrices that are better than
those currently published.

5. liberation.h/liberation.c : These are procedures for performing RAID-6 coding and decoding with minimal
density MDS codes [PBV11] — the RAID-6 Liberation codes [Pla08], Blaum-Roth codes [BR99] and the
RAID-6 Liber8tion code [Pla09]. These are bit-matrix codesthat perform much better than the Reed-Solomon
variants and better than EVENODD coding [BBBM95]. In some cases, they even outperform RDP [CEG+04],
which is the best currently known RAID-6 code.

Each module is described in its own section below. Additionally, there are example programs that show the usage
of each module.
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3 Matrix-Based Coding In General

The mechanics of matrix-based coding are explained in greatdetail in [Pla97]. We give a high-level overview here.

Authors’ Caveat: We are using old nomenclature of “distribution matrices.” In standard coding theory,
the “distribution matrix” is the transpose of the Generatormatrix. In the next revision ofjerasure, we
will update the nomenclature to be more consistent with classic coding theory.

Suppose we havek data words andm coding words, each composed ofw bits. We can describe the state of a
matrix-based coding system by a matrix-vector product as depicted in Figure 3. The matrix is called adistribution
matrix and is a(k + m) × k matrix. The elements of the matrix are numbers inGF (2w) for some value ofw.
This means that they are integers between 0 and2w − 1, and arithmetic is performed using Galois Field arithmetic:
addition is equal to XOR, and multiplication is implementedin a variety of ways. The Galois Field arithmetic library
in [Pla07a] has procedures which implement Galois Field arithmetic.

Figure 3: Using a matrix-vector product to describe a codingsystem.

The topk rows of the distribution matrix compsose ak × k identity matrix. The remainingm rows are called
thecoding matrix, and are defined in a variety of ways [Rab89, Pre89, BKK+95, PD05]. The distribution matrix is
multiplied by a vector that contains the data words and yields a product vector containing both the data and the coding
words. Therefore, to encode, we need to performm dot products of the coding matrix with the data.

To decode, we note that each word in the system has a corresponding row of the distribution matrix. When devices
fail, we create a decoding matrix fromk rows of the distribution that correspond to non-failed devices. Note that this
matrix multiplied by the original data equals thek survivors whose rows we selected. If we invert this matrix and
multiply it by both sides of the equation, then we are given a decoding equation – the inverted matrix multiplied by
the survivors equals the original data.

4 Bit-Matrix Coding In General

Bit-matrix coding is first described in the original Cauchy Reed-Solomon coding paper [BKK+95]. To encode and
decode with a bit-matrix, we expand a distribution matrix inGF (2w) by a factor ofw in each direction to yield
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aw(k+m)×wk matrix which we call abinary distribution matrix (BDM). We multiply that by awk element vector,
which is composed ofw bits from each data device. The product is aw(k +m) element vector composed ofw bits
from each data and coding device. This is depicted in Figure 4. It is useful to visualize the matrix as being composed
of w × w sub-matrices.

Figure 4: Describing a coding system with a bit-matrix-vector product.

As with the matrix-vector product inGF (2w), each row of the product corresponds to a row of the BDM, and is
computed as the dot product of that row and the data bits. Since all elements are bits, we may perform the dot product
by taking the XOR of each data bit whose element in the matrix’s row is one. In other words, rather than performing
the dot product with additions and multiplications, we perform it only with XORs. Moreover, the performance of this
dot product is directly related to the number of ones in the row. Therefore, it behooves us to find matrices with few
ones.

Decoding with bit-matrices is the same as with matrices overGF (2w), except now each device corresponds tow

rows of the matrix, rather than one. Also keep in mind that a bit in this description corresponds to a packet in the
implementation.

While the classic construction of bit-matrices starts witha standard distribution matrix inGF (2w), it is possible
to construct bit-matrices that have no relation to Galois Field arithmetic yet still have desired coding and decoding
properties. The minimal density RAID-6 codes work in this fashion.

4.1 Using a schedule rather than a bit-matrix

Consider the act of encoding with a bit-matrix. We give an example in Figure 5, wherek = 3, w = 5, and we are
calculating the contents of one coding device. The straightforward way to encode is to calculate the five dot products
for each of the five bits of the coding device, and we can do thatby traversing each of the five rows, performing XORs
where there are ones in the matrix.
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Figure 5: An example super-row of a bit-matrix fork = 3, w = 5.

Since the matrix is sparse, it is more efficient to precomputethe coding operations, rather than traversing the matrix
each time one encodes. The data structure that we use to represent encoding is aschedule, which is a list of 5-tuples:

< op, sd, sb, dd, db >,

whereop is an operation code: 0 for copy and 1 for XOR,sd is the id of the source device andsb is the bit of the source
device. The last two elements,dd anddb are the destination device and bit. By convention, we identify devices using
integers from zero tok+m− 1. An id i < k identifies data deviceDi, and an idi ≥ k identifies coding deviceCi−k.

A schedule for encoding using the bit-matrix in Figure 5 is shown in Figure 6.

< 0, 0, 0, 3, 0 >,< 1, 1, 1, 3, 0 >,< 1, 2, 2, 3, 0 >, c0,0 = d0,0 ⊕ d1,1 ⊕ d2,2
< 0, 0, 1, 3, 1 >,< 1, 1, 2, 3, 1 >,< 1, 2, 3, 3, 1 >, c0,1 = d0,1 ⊕ d1,2 ⊕ d2,3
< 0, 0, 2, 3, 2 >,< 1, 1, 2, 3, 2 >,< 1, 1, 3, 3, 2 >,< 1, 2, 4, 3, 2 >, c0,2 = d0,2 ⊕ d1,2 ⊕ d1,3 ⊕ d2,4
< 0, 0, 3, 3, 3 >,< 1, 1, 4, 3, 3 >,< 1, 2, 0, 3, 3 >, c0,3 = d0,3 ⊕ d1,4 ⊕ d2,0
< 0, 0, 4, 3, 4 >,< 1, 1, 0, 3, 4 >,< 1, 2, 0, 3, 4 >,< 1, 2, 1, 3, 4 > . c0,4 = d0,4 ⊕ d1,0 ⊕ d2,0 ⊕ d2,1

(a) (b)

Figure 6: A schedule of bit-matrix operations for the bit-matrix in Figure 5. (a) shows the schedule, and (b) shows the
dot-product equations corresponding to each line of the schedule.

As noted in [HDRT05, Pla08], one can derive schedules for bit-matrix encoding and decoding that make use of
common expressions in the dot products, and therefore can perform the bit-matrix-vector product with fewer XOR op-
erations than simply traversing the bit-matrix. This is howRDP encoding works with optimal performance [CEG+04],
even though there are more thankw ones in the lastw rows of its BDM. We term such schedulingsmartscheduling,
and scheduling by simply traversing the matrixdumbscheduling.

There are additional techniques for scheduling that work better than what we have implemented here [HLC07,
Pla10, PSR12]. Embedding these withinjerasure is the topic of future work.

5 MDS Codes

A code is MDS if it can recover the data following the failure of anym devices. If a matrix-vector product is used
to define the code, then it is MDS if every combination ofk rows composes an invertible matrix. If a bit-matrix is
used, then we define asuper-rowto be a row’s worth ofw × w submatrices. The code is MDS if every combination
of k super-rows composes an invertible matrix. Again, one may generate an MDS code using standard techniques
such as employing a Vandermonde matrix [PD05] or Cauchy matrix [Rab89, BKK+95]. However, there are other
constructions that also yield MDS matrices, such as EVENODDcoding [BBBM95, BBV96], RDP coding [CEG+04,
Bla06], the STAR code [HX05], and the minimal density RAID-6codes [PBV11].
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6 Part 1 of the Library: Galois Field Arithmetic

The filesgalois.h andgalois.ccontain procedures for Galois Field arithmetic inGF (2w) for 1 ≤ w ≤ 32. They
contains procedures for single arithmetic operations, forXOR-ing a region of bytes, and for performing multiplication
of a region of bytes by a constant inGF (28), GF (216) andGF (232). They are wrappers around GF-Complete, and
can inherit all of the functionality and flexibility of GF-Complete.

For the purposes ofjerasure, the following procedures fromgalois.handgalois.care used:

• galois single multiply(int a, int b, int w) andgalois single divide(int a, int b, int w) : These perform multi-
plication and division on single elementsa andb of GF (2w).

• galois region xor(char *r1, char *r2, char *r3, int nbytes) : This XORs two regions of bytes,r1 andr2 and
places the sum inr3. Note thatr3 may be equal tor1 or r2 if we are replacing one of the regions by the sum.
Nbytesmust be a multiple of the machine’slong word size.

• galois w08 region multiply(char *region, int multby, int nbytes, char *r2, in t add): This multiplies an
entire region of bytes by the constantmultby in GF (28). If r2 is NULL thenregion is overwritten. Otherwise,
if add is zero, the products are placed inr2. If add is non-zero, then the products are XOR’d with the bytes
in r2.

• galois w16 region multiply() andgalois w32 region multiply() are identical togalois w08 region multiply() ,
except they are inGF (216) andGF (232) respectively.

• galois changetechnique(gf t *gf, int w) : This allows you to create your own custom implementation ofGalois
Field arithmetic from GF-Complete. To do this, please seecreate gf from argv() or gf init hard() from the
GF-Complete manual. Those procedures allow you to create agf t, and then you callgalois changetechnique()
with thisgf t to makejerasure use it.

• galois init field() and galois init compositefield() will creategf t pointers using the parameters from GF-
Complete. We recommend, however, that you usecreate gf from argv() or gf init hard() instead.

• galois get field ptr(int w) returns a pointer to thegf t that is currently being used byjerasure for the given
value ofw.

In section 12, we go over some example programs that change the Galois Field. We don’t do it here, because we
feel it clutters up the description at this point.

7 Part 2 of the Library: Kernel Routines

The files jerasure.h and jerasure.c implement procedures that are common to many aspects of coding. We give
example programs that make use of them in Section 7.7 below.

Before describing the procedures that composejerasure.c, we detail the arguments that are common to multiple
procedures:

• int k : The number of data devices.

• int m : The number of coding devices.

• int w : The word size of the code.
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• int packetsize: The packet size as defined in section 1. This must be a multiple ofsizeof(long).

• int size: The total number of bytes per device to encode/decode. Thismust be a multiple ofsizeof(long). If a
bit-matrix is being employed, then it must be a multiple ofpacketsize * w. If one desires to encode data blocks
that do not conform to these restrictions, than one must pad the data blocks with zeroes so that the restrictions
are met.

• int *matrix : This is an array withk*m elements that represents the coding matrix — i.e. the lastm rows of
the distribution matrix. Its elements must be between 0 and2w − 1. The element in rowi and columnj is
in matrix[i*k+j] .

• int *bitmatrix : This is an array ofw*m*w*k elements that compose the lastwm rows of the BDM. The element
in row i and columnj is in bitmatrix[i*k*w+j] .

• char **data ptrs: This is an array ofk pointers tosizebytes worth of data. Each of these must be long word
aligned.

• char **coding ptrs: This is an array ofm pointers tosizebytes worth of coding data. Each of these must be
long word aligned.

• int *erasures: This is an array of id’s of erased devices. Id’s are numbers between 0 andk+m-1 as described
in Section 4.1. If there aree erasures, then elements 0 throughe − 1 of erasuresidentify the erased devices,
anderasures[e] must equal -1.

• int *erased: This is an alternative way of specifying erasures. It is ak+m element array. Elementi of the array
represents the device with idi. If erased[i] equals 0, then devicei is working. If erased[i] equals 1, then it is
erased.

• int **schedule: This is an array of 5-element integer arrays. It representsa schedule as defined in Section 4.1.
If there areo operations in the schedule, thenschedulemust have at leasto + 1 elements, andschedule[o][0]
should equal -1.

• int ***cache : Whenm equals 2, there are few enough combinations of failures thatone can precompute all
possible decoding schedules. This is held in thecachevariable. We will not describe its structure – just that it
is an(int ***) .

• int row k ones: Whenm > 1 and the first row of the coding matrix is composed of all ones, then there are times
when we can improve the performance of decoding by not following the methodology described in Section 3.
This is true when coding device zero is one of the survivors, and more than one data device has been erased. In
this case, it is better to decode all but one of the data devices as described in Section 3, but decode the last data
device using the other data devices and coding device zero. For this reason, some of the decoding procedures
take a paramaterrow k ones, which should be one if the first row ofmatrix is all ones. The same optimization
is available when the firstw rows ofbitmatrix composek identity matrices –row k onesshould be set to one
when this is true as well.

• int *decoding matrix : This is ak × k matrix orwk × wk bit-matrix that is used to decode. It is the matrix
constructed by employing relevant rows of the distributionmatrix and inverting it.



7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 11

• int *dm ids: As described in Section 3, we create the decoding matrix by selectingk rows of the distribution
matrix that correspond to surviving devices, and then inverting that matrix. This yieldsdecodingmatrix . The
product ofdecodingmatrix and these survivors is the original data.dm ids is a vector withk elements that
contains the id’s of the devices corresponding to the rows ofthe decoding matrix. In other words, this contains
the id’s of the survivors. When decoding with a bit-matrixdm ids still hask elements — these are the id’s of
the survivors that correspond to thek super-rows of the decoding matrix.

7.1 Matrix/Bitmatrix/Schedule Creation Routines

When we use an argument from the list above, we omit its type for brevity.

• int *jerasure matrix to bitmatrix(k, m, w, matrix) : This converts am× k matrix inGF (2w) to awm×wk

bit-matrix, using the technique described in [BKK+95]. If matrix is a coding matrix for an MDS code, then
the returned bit-matrix will also describe an MDS code.

• int **jerasure dumb bitmatrix to schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a
schedule of coding operations using the straightforward technique of simply traversing each row of the matrix
and scheduling XOR operations whenever a one is encountered.

• int **jerasure smart bitmatrix to schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a
schedule of coding operations using the optimization described in [Pla08]. Basically, it tries to use encoded
bits (or decoded bits) rather than simply the data (or surviving) bits to reduce the number of XORs. Note, that
when a smart schedule is employed for decoding, we don’t needto specifyrow k ones, because the schedule
construction technique automatically finds this optimization.

• int ***jerasure generateschedulecache(k, m, w, bitmatrix, int smart): This only works whenm = 2. In
this case, it generates schedules for every combination of single and double-disk erasure decoding. It returns a
cache of these schedules. Ifsmart is one, thenjerasure smart bitmatrix to schedule()is used to create the
schedule. Otherwise,jerasure dumb bitmatrix to schedule()is used.

• void jerasure free schedule(schedule): This frees all allocated memeory for a schedule that is created by either
jerasure dumb bitmatrix to schedule()or jerasure smart bitmatrix to schedule().

• void jerasure free schedulecache(k, m, cache): This frees all allocated data for a schedule cache created by
jerasure generateschedulecache().

7.2 Encoding Routines

• void jerasure do parity(k, data ptrs, char *parity ptr, size): This calculates the parity ofsizebytes of data
from each ofk regions of memory accessed bydata ptrs. It puts the result into thesizebytes pointed to by
parity ptr . Like each ofdata ptrs, parity ptr must be long word aligned, andsize must be a multiple of
sizeof(long).

• void jerasure matrix encode(k, m, w, matrix, dataptrs, coding ptrs, size): This encodes with a matrix
in GF (2w) as described in Section 3 above.w must be∈ {8, 16, 32}.

• void jerasure bitmatrix encode(k, m, w, bitmatrix, data ptrs, coding ptrs, size, packetsize): This encodes
with a bit-matrix. Noww may be any number between 1 and 32.
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• void jerasure scheduleencode(k, m, w, schedule, dataptrs, coding ptrs, size, packetsize): This encodes
with a schedule created from eitherjerasure dumb bitmatrix to schedule()or jerasure smart bitmatrix to-
schedule().

7.3 Decoding Routines

Each of these returns an integer which is zero on success or -1if unsuccessful. Decoding can be unsuccessful if there
are too many erasures.

• int jerasure matrix decode(k, m, w matrix, row k ones, erasures, dataptrs, coding ptrs, size): This de-
codes using a matrix inGF (2w), w ∈ {8, 16, 32}. This works by creating a decoding matrix and performing
the matrix/vector product, then re-encoding any erased coding devices. When it is done, the decoding matrix
is discarded. If you want access to the decoding matrix, you should usejerasure make decodingmatrix()
below.

• int jerasure bitmatrix decode(k, m, w bitmatrix, row k ones, erasures, dataptrs, coding ptrs, size, pack-
etsize): This decodes with a bit-matrix rather than a matrix. Note, it does not do any scheduling – it simply
creates the decoding bit-matrix and uses that directly to decode. Again, it discards the decoding bit-matrix when
it is done.

• int jerasure scheduledecodelazy(k, m, w bitmatrix, erasures, data ptrs, coding ptrs, size, packetsize, int
smart): This decodes by creating a schedule from the decoding matrix and using that to decode. Ifsmart is
one, thenjerasure smart bitmatrix to schedule()is used to create the schedule. Otherwise,jerasure dumb-
bitmatrix to schedule()is used. Note, there is norow k ones, because ifsmart is one, the schedule created

will find that optimization anyway. This procedure is a bit subtle, because it does a little more than simply create
the decoding matrix – it creates it and then adds rows that decode failed coding devices from the survivors. It
derives its schedule from that matrix. This technique is also employed when creating a schedule cache using
jerasure generateschedulecache(). The schedule and all data structures that were allocated for decoding are
freed when this procedure finishes.

• int jerasure scheduledecodecache(k, m, w cache, erasures, dataptrs, coding ptrs, size, packetsize): This
uses the schedule cache to decode whenm = 2.

• int jerasure make decoding matrix(k, m, w matrix, erased, decodingmatrix, dm ids): This does not de-
code, but instead creates the decoding matrix. Note that both decodingmatrix anddm ids should be allocated
and passed to this procedure, which will fill them in.Decodingmatrix should havek2 integers, anddm ids
should havek integers.

• int jerasure make decodingbitmatrix(k, m, w matrix, erased, decoding matrix, dm ids): This does not
decode, but instead creates the decoding bit-matrix. Again, bothdecodingmatrix anddm ids should be al-
located and passed to this procedure, which will fill them in.This timedecodingmatrix should havek2w2

integers, whiledm ids still hask integers.

• int *jerasure erasuresto erased(k, m, erasures): This converts the specification oferasuresdefined above
into the specification oferasedalso defined above.
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7.4 Dot Product Routines

• void jerasure matrix dotprod(k, w, int *matrix row, int *src ids, int dest id, data ptrs, coding ptrs, size):
This performs the multiplication of one row of an encoding/decoding matrix times data/survivors. The id’s of
the source devices (corresponding to the id’s of the vector elements) are insrc ids. The id of the destination
device is indest id. w must be∈ {8, 16, 32}. When a one is encountered in the matrix, the proper XOR/copy
operation is performed. Otherwise, the operation is multiplication by the matrix element inGF (2w) and an
XOR into the destination.

• void jerasure bitmatrix dotprod(k, w, int *bitmatrix row, int *src ids, int dest id, data ptrs, coding ptrs,
size, packetsize): This is the analogous procedure for bit-matrices. It performsw dot products according to
thew rows of the matrix specified bybitmatrix row.

• void jerasure do scheduledoperations(char **ptrs, schedule, packetsize): This performs a schedule on the
pointers specified byptrs. Althoughw is not specified, it performs the schedule onw(packetsize) bytes. It is
assumed thatptrs is the right size to matchschedule. Typically, this isk +m.

7.5 Basic Matrix Operations

• int jerasure invert matrix(int *mat, int *inv, int rows, int w) : This inverts a (rows× rows) matrix inGF (2w).
It puts the result ininv, which must be allocated to containrows2 integers. The matrixmat is destroyed after
the inversion. It returns 0 on success, or -1 if the matrix wasnot invertible.

• int jerasure invert bitmatrix(int *mat, int *inv, int rows) : This is the analogous procedure for bit-matrices.
Obviously, one can calljerasure invert matrix() with w = 1, but this procedure is faster.

• int jerasure invertible matrix(int *mat, int rows, int w) : This does not perform the inversion, but simply
returns 1 or 0, depending on whethermat is invertible. It destroysmat.

• int jerasure invertible bitmatrix(int *mat, int rows) : This is the analogous procedure for bit-matrices.

• void jerasure print matrix(int *matrix, int rows, int cols, int w) : This prints a matrix composed of elements
in GF (2w) on standard output. It usesw to determine spacing.

• void jerasure print bitmatrix(int *matrix, int rows, int cols, int w) : This prints a bit-matrix on standard
output. It inserts a space between everyw characters, and a blank line after everyw lines. Thus super-rows and
super-columns are easy to identify.

• int *jerasure matrix multiply(int *m1, int *m2, int r1, int c1, int r2, int c2, int w ): This performs matrix
multiplication inGF (2w). The matrixm1 should be a (r1 × c1) matrix, andm2 should be a (r2 × c2) matrix.
Obviously,c1 should equalr2. It will return a (r1 × c2) matrix equal to the product.

7.6 Statistics

Finally, jerasure.ckeeps track of three quantities:

• The number of bytes that have been XOR’d usinggalois region xor().

• The number of bytes that have been multiplied by a constant inGF (2w), usinggalois w08 region multiply() ,
galois w16 region multiply() or galois w32 region multiply() .
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• The number of bytes that have been copied usingmemcpy().

There is one procedure that allows access to those values:

• void jerasure get stats(double *fill in): The argumentfill in should be an array of threedoubles. The proce-
dure will fill in the array with the three values above in that order. The unit is bytes. After callingjerasure get-
stats(), the counters that keep track of the quantities are reset to zero.

The proceduregalois w08 region multiply() and its kin have a parameter that causes it to XOR the product with
another region with the same overhead as simply performing the multiplication. For that reason, when these procedures
are called with this functionality enabled, the resulting XORs are not counted with the XOR’s performed withgalois-
region xor().

7.7 Example Programs to Demonstrate Use

In theExamplesdirectory, there are eight programs that demonstrate nearly every procedure call injerasure.c. They
are namedjerasure 0x for 0 < x ≤ 8. There are also programs to demonstrate Reed-Solomon coding, Cauchy
Reed-Solomon coding and Liberation coding. Finally, thereare programs that encode and decode files.

All of the example programs, with the exception of the encoder and decoder emit HTML as output. Many may be
read easily as text, but some of them format better with a web browser.

• jerasure 01.c: This takes three parameters:r, c andw. It creates anr× c matrix inGF (2w), where the element
in row i, columnj is equal to2ci+j in GF (2w). Rows and columns are zero-indexed. Here is an example –
athough it emits HTML, it is readable easily as text:

UNIX> jerasure_01 3 15 8
<HTML><TITLE>jerasure_01 3 15 8</TITLE>
<h3>jerasure_01 3 15 8</h3>
<pre>

1 2 4 8 16 32 64 128 29 58 116 232 205 135 19
38 76 152 45 90 180 117 234 201 143 3 6 12 24 48
96 192 157 39 78 156 37 74 148 53 106 212 181 119 238

UNIX>

This demonstrates usage ofjerasure print matrix() andgalois single multiply() .

• jerasure 02.c: This takes three parameters:r, c andw. It creates the same matrix as injerasure 01, and then
converts it to arw × cw bit-matrix and prints it out. Example:

UNIX> jerasure_01 3 10 4
<HTML><TITLE>jerasure_01 3 10 4</TITLE>
<h3>jerasure_01 3 10 4</h3>
<pre>

1 2 4 8 3 6 12 11 5 10
7 14 15 13 9 1 2 4 8 3
6 12 11 5 10 7 14 15 13 9

UNIX> jerasure_02 3 10 4
<HTML><TITLE>jerasure_02 3 10 4</TITLE>
<h3>jerasure_02 3 10 4</h3>
<pre>
1000 0001 0010 0100 1001 0011 0110 1101 1010 0101
0100 1001 0011 0110 1101 1010 0101 1011 0111 1111
0010 0100 1001 0011 0110 1101 1010 0101 1011 0111
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0001 0010 0100 1001 0011 0110 1101 1010 0101 1011

1011 0111 1111 1110 1100 1000 0001 0010 0100 1001
1110 1100 1000 0001 0010 0100 1001 0011 0110 1101
1111 1110 1100 1000 0001 0010 0100 1001 0011 0110
0111 1111 1110 1100 1000 0001 0010 0100 1001 0011

0011 0110 1101 1010 0101 1011 0111 1111 1110 1100
1010 0101 1011 0111 1111 1110 1100 1000 0001 0010
1101 1010 0101 1011 0111 1111 1110 1100 1000 0001
0110 1101 1010 0101 1011 0111 1111 1110 1100 1000
UNIX>

This demonstrates usage ofjerasure print bitmatrix() andjerasure matrix to bitmatrix() .

• jerasure 03.c: This takes three parameters:k andw. It creates ak × k Cauchy matrix inGF (2w), and tests
invertibility.

The parameterk must be less than2w. The element in rowi, columnj is set to:

1

i⊕ (2w − j − 1)

where division is inGF (2w), ⊕ is XOR and subtraction is regular integer subtraction. Whenk > 2w−1, there
will be i andj such thati⊕ (2w − j − 1) = 0. When that happens, we set that matrix element to zero.

After creating the matrix and printing it, we test whether itis invertible. Ifk ≤ 2w−1, then it will be invertible.
Otherwise it will not. Then, if it is invertible, it prints the inverse, then multplies the inverse by the original
matrix and prints the product which is the identity matrix. Examples:

UNIX> jerasure_03 4 3
<HTML><TITLE>jerasure_03 4 3</TITLE>
<h3>jerasure_03 4 3</h3>
<pre>
The Cauchy Matrix:
4 3 2 7
3 4 7 2
2 7 4 3
7 2 3 4

Invertible: Yes

Inverse:
1 2 5 3
2 1 3 5
5 3 1 2
3 5 2 1

Inverse times matrix (should be identity):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
UNIX> jerasure_03 5 3
<HTML><TITLE>jerasure_03 5 3</TITLE>
<h3>jerasure_03 5 3</h3>
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<pre>
The Cauchy Matrix:
4 3 2 7 6
3 4 7 2 5
2 7 4 3 1
7 2 3 4 0
6 5 1 0 4

Invertible: No
UNIX>

This demonstrates usage ofjerasure print matrix() , jerasure invertible matrix() , jerasure invert matrix()
andjerasure matrix multiply() .

• jerasure 04.c: This does the exact same thing asjerasure 03, except it usesjerasure matrix to bitmatrix()
to convert the Cauchy matrix to a bit-matrix, and then uses the bit-matrix operations to test invertibility and to
invert the matrix. Examples:

UNIX> jerasure_04 4 3
<HTML><TITLE>jerasure_04 4 3</TITLE>
<h3>jerasure_04 4 3</h3>
<pre>
The Cauchy Bit-Matrix:
010 101 001 111
011 111 101 100
101 011 010 110

101 010 111 001
111 011 100 101
011 101 110 010

001 111 010 101
101 100 011 111
010 110 101 011

111 001 101 010
100 101 111 011
110 010 011 101

Invertible: Yes

Inverse:
100 001 110 101
010 101 001 111
001 010 100 011

001 100 101 110
101 010 111 001
010 001 011 100

110 101 100 001
001 111 010 101
100 011 001 010

101 110 001 100
111 001 101 010
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011 100 010 001

Inverse times matrix (should be identity):
100 000 000 000
010 000 000 000
001 000 000 000

000 100 000 000
000 010 000 000
000 001 000 000

000 000 100 000
000 000 010 000
000 000 001 000

000 000 000 100
000 000 000 010
000 000 000 001
UNIX> jerasure_04 5 3
<HTML><TITLE>jerasure_04 5 3</TITLE>
<h3>jerasure_04 5 3</h3>
<pre>
The Cauchy Bit-Matrix:
010 101 001 111 011
011 111 101 100 110
101 011 010 110 111

101 010 111 001 110
111 011 100 101 001
011 101 110 010 100

001 111 010 101 100
101 100 011 111 010
010 110 101 011 001

111 001 101 010 000
100 101 111 011 000
110 010 011 101 000

011 110 100 000 010
110 001 010 000 011
111 100 001 000 101

Invertible: No
UNIX>

This demonstrates usage ofjerasure print bitmatrix() , jerasure matrix to bitmatrix() , jerasure invertible -
bitmatrix() , jerasure invert bitmatrix() andjerasure matrix multiply() .

• jerasure 05.c: This takes five parameters:k, m, w, size and an integerseedto a random number generator, and
performs a basic Reed-Solomon coding example inGF (2w). w must be either 8, 16 or 32, and the sumk +m

must be less than or equal to2w. The total number of bytes for each device is given bysize which must be a
multiple ofsizeof(long). It first sets up anm× k Cauchy coding matrix where elementi, j is:

1

i⊕ (m+ j)
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where division is inGF (2w), ⊕ is XOR, and addition is standard integer addition. It printsout thesem rows.
The program then createsk data devices each withsize bytes of random data and encodes them intom coding
devices usingjerasure matrix encode(). It prints out the data and coding in hexadecimal– one byte isrepre-
sented by 2 hex digits. Next, it erasesm random devices from the collection of data and coding devices, and
prints the resulting state. Then it decodes the erased devices usingjerasure matrix decode()and prints the re-
stored state. Next, it shows what the decoding matrix looks like when the firstm devices are erased. This matrix
is the inverse of the lastk rows of the distribution matrix. And finally, it usesjerasure matrix dotprod() to
show how to explicitly calculate the first data device from the others when the firstm devices have been erased.
Here is an example forw = 8 with 3 data devices and 4 coding devices each with a size of 8 bytes:

UNIX> jerasure_05 3 4 8 8 100
<HTML><TITLE>jerasure_05 3 4 8 8 100</TITLE>
<h3>jerasure_05 3 4 8 8 100</h3>
<pre>
The Coding Matrix (the last m rows of the Generator Matrix GˆT ):

71 167 122
167 71 186
122 186 71
186 122 167

Encoding Complete:

Data Coding
D0 : 8b e3 eb 02 03 5f c5 99 C0 : ab 09 6d 49 24 e2 6e ae
D1 : 14 2f f4 2b e7 72 85 b3 C1 : ee ee bb 70 26 c2 b3 9c
D2 : 85 eb 30 9a ee d4 5d b1 C2 : 69 c0 33 e8 1a d8 c8 e3

C3 : 4b b3 6c 32 45 ae 92 5b

Erased 4 random devices:

Data Coding
D0 : 8b e3 eb 02 03 5f c5 99 C0 : 00 00 00 00 00 00 00 00
D1 : 00 00 00 00 00 00 00 00 C1 : 00 00 00 00 00 00 00 00
D2 : 85 eb 30 9a ee d4 5d b1 C2 : 69 c0 33 e8 1a d8 c8 e3

C3 : 00 00 00 00 00 00 00 00

State of the system after decoding:

Data Coding
D0 : 8b e3 eb 02 03 5f c5 99 C0 : ab 09 6d 49 24 e2 6e ae
D1 : 14 2f f4 2b e7 72 85 b3 C1 : ee ee bb 70 26 c2 b3 9c
D2 : 85 eb 30 9a ee d4 5d b1 C2 : 69 c0 33 e8 1a d8 c8 e3

C3 : 4b b3 6c 32 45 ae 92 5b

Suppose we erase the first 4 devices. Here is the decoding mat rix:

130 25 182
252 221 25
108 252 130

And dm_ids:

4 5 6
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After calling jerasure_matrix_dotprod, we calculate the v alue of device #0 to be:

D0 : 8b e3 eb 02 03 5f c5 99

UNIX>

Referring back to the conceptual model in Figure 3, it shouldbe clear in this encoding how the firstw bits ofC0

are calculated from the firstw bits of each data device:

byte0 of C0 = (71× byte0 of D0)⊕ (167× byte0 of D1)⊕ (122× byte0 of D2)

where multiplication is inGF (28).

However, keep in mind that the implementation actually performs dot products on groups of bytes at a time. So
in this example, where each device holds 8 bytes, the dot product is actually:

8 bytes ofC0 = (71× 8 bytes ofD0)⊕ (167× 8 bytes ofD1)⊕ (122× 8 bytes ofD2)

This is accomplished usinggalois w08 region multiply() .
Here is a similar example, this time withw = 16 and each device holding 16 bytes:

UNIX> jerasure_05 3 4 16 16 102
<HTML><TITLE>jerasure_05 3 4 16 16 102</TITLE>
<h3>jerasure_05 3 4 16 16 102</h3>
<pre>
The Coding Matrix (the last m rows of the Generator Matrix GˆT ):

52231 20482 30723
20482 52231 27502
30723 27502 52231
27502 30723 20482

Encoding Complete:

Data Coding
D0 : 5596 1e69 b292 a935 f01a 77b8 b22e 9a70 C0 : 122e 518d c2c7 3 15c 9c76 2591 1a5a 397c
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1 : 7741 f8c4 765c a 408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 e4e0 3969 C2 : 9b0d c474 e654 3 87a e4b7 d5fb 2d8c cdb5

C3 : eb25 24d4 6e49 e736 4c9e 7ab6 0cd2 d2fa

Erased 4 random devices:

Data Coding
D0 : 0000 0000 0000 0000 0000 0000 0000 0000 C0 : 0000 0000 0000 0 000 0000 0000 0000 0000
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1 : 7741 f8c4 765c a 408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 e4e0 3969 C2 : 0000 0000 0000 0 000 0000 0000 0000 0000

C3 : 0000 0000 0000 0000 0000 0000 0000 0000

State of the system after decoding:

Data Coding
D0 : 5596 1e69 b292 a935 f01a 77b8 b22e 9a70 C0 : 122e 518d c2c7 3 15c 9c76 2591 1a5a 397c
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1 : 7741 f8c4 765c a 408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 e4e0 3969 C2 : 9b0d c474 e654 3 87a e4b7 d5fb 2d8c cdb5

C3 : eb25 24d4 6e49 e736 4c9e 7ab6 0cd2 d2fa
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Suppose we erase the first 4 devices. Here is the decoding mat rix:

130 260 427
252 448 260
108 252 130

And dm_ids:

4 5 6

After calling jerasure_matrix_dotprod, we calculate the v alue of device #0 to be:

D0 : 5596 1e69 b292 a935 f01a 77b8 b22e 9a70

UNIX>

In this encoding, the 8 16-bit half-words ofC0 are calculated as:

(52231× 8 half-words ofD0)⊕ (20482× 8 half-words ofD1)⊕ (30723× 8 half-words ofD2)

usinggalois w16 region multiply() .

This program demonstrates usage ofjerasure matrix encode(), jerasure matrix decode(), jerasure print -
matrix() , jerasure make decoding matrix() andjerasure matrix dotprod().

• jerasure 06.c: This takes five parameters:k, m, w, packetsizeandseed, and performs a similar example to
jerasure 05, except it uses Cauchy Reed-Solomon coding inGF (2w), converting the coding matrix to a bit-
matrix. The output this time is formatted HTML.k +m must be less than or equal to2w andpacketsizemust
be a multiple ofsizeof(long). It sets up each device to hold a total ofw ∗ packetsize bytes. Here, packets are
numberedp0 throughpw−1 for each device. It then performs the same encoding and decoding as the previous
example but with the corresponding bit-matrix procedures.
The HTML file athttp://web.eecs.utk.edu/ ˜ plank/plank/jerasure/j06_3_4_3_8_100.html shows the out-
put of

UNIX> jerasure_06 3 4 3 8 100

In this encoding, the first packet ofC0 is computed according to the six ones in the first row of the coding matrix:

C0p0 = D0p0 ⊕D0p1 ⊕D0p2 ⊕D1p2 ⊕D2p0 ⊕D2p2

These dotproducts are accomplished withgalois region xor() .

This program demonstrates usage ofjerasure bitmatrix encode(), jerasure bitmatrix decode(), jerasure -
print bitmatrix() , jerasure make decodingbitmatrix() andjerasure bitmatrix dotprod().

• jerasure 07.c: This takes four parameters:k, m, w andseed. It performs the same coding/decoding as in
jerasure 06, except it uses bit-matrix scheduling instead of bit-matrix operations. Thepacketsizeis set at
sizeof(long)bytes. It creates a “dumb” and “smart” schedule for encoding, encodes with them and prints out
how many XORs each took. The smart schedule will outperform the dumb one.

Next, it erasesm random devices and decodes usingjerasure scheduledecodelazy(). Finally, it shows how
to usejerasure do scheduledoperations()in case you need to do so explicitly.
The HTML file at http://web.eecs.utk.edu/ ˜ plank/plank/jerasure/j07_3_4_3_102.html shows the out-
put of
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UNIX> jerasure_07 3 4 3 102

This demonstrates usage ofjerasure dumb bitmatrix to schedule(), jerasure smart bitmatrix to schedule(),
jerasure scheduleencode(), jerasure scheduledecodelazy(), jerasure do scheduledoperations()andjera-
sure get stats().

• jerasure 08.c: This takes three parameters:k, w and aseed, and performs a simple RAID-6 example using
a schedule cache. Again,packetsizeis sizeof(long). It sets up a RAID-6 coding matrix whose first row is
composed of ones, and where the element in columnj of the second row is equal to2j in GF (2w). It converts
this to a bit-matrix and creates a smart encoding schedule and a schedule cache for decoding.

It then encodes twice – first with the smart schedule, and thenwith the schedule cache, by setting the two
coding devices as the erased devices. Next it deletes two random devices and uses the schedule cache to decode
them. Next, it deletes the first coding devices and recalculates it usingjerasure do parity() to demonstrate that
procedure. Finally, it frees the smart schedule and the schedule cache.

Example - the output of the following command is inhttp://web.eecs.utk.edu/ ˜ plank/plank/jerasure/

j08_7_7_100.html .

UNIX> jerasure_08 7 7 100

This demonstrates usage ofjerasure generateschedulecache(), jerasure smart bitmatrix to schedule(),
jerasure scheduleencode(), jerasure scheduledecodecache(), jerasure free schedule(), jerasure free -
schedulecache(), jerasure get stats()andjerasure do parity() .

8 Part 3 of the Library: Classic Reed-Solomon Coding Routines

The filesreed sol.handreed sol.cimplement procedures that are specific to classic Vandermonde matrix-based Reed-
Solomon coding, and for Reed-Solomon coding optimized for RAID-6. Refer to [Pla97, PD05] for a description of
classic Reed-Solomon coding and to [Anv07] for Reed-Solomon coding optimized for RAID-6. Where not specified,
the parameters are as described in Section 7.

8.1 Vandermonde Distribution Matrices

There are three procedures for generating distribution matrices based on an extended Vandermonde matrix inGF (2w).
It is anticipated that only the first of these will be needed for coding applications, but we include the other two in case
a user wants to look at or modify these matrices.

• int *reed sol vandermondecoding matrix(k, m, w) : This returns the lastm rows of the distribution matrix
in GF (2w), based on an extended Vandermonde matrix. This is am × k matrix that can be used with the
matrix routines injerasure.c. The first row of this matrix is guaranteed to be all ones. The first column is also
guaranteed to be all ones.

• int *reed sol extendedvandermondematrix(int rows, int cols, w) : This creates an extended Vandermonde
matrix with rows rows andcolscolumns inGF (2w).

• int *reed sol big vandermondedistribution matrix(int rows, int cols, w) : This converts the extended matrix
above into a distribution matrix so that the topcols rows compose an identity matrix, and the remaining rows
are in the format returned byreed sol vandermondecoding matrix() .
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8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6

In RAID-6, m is equal to two. The first coding device,P is calculated from the others using parity, and the second
coding device,Q is calculated from the data devicesDi using:

Q =

k−1∑

i=0

2iDi

where all arithmetic is inGF (2w). The reason that this is an optimization is that one may implement multiplication
by two in an optimized fashion. The following procedures facilitate this optimization.

• int reed sol r6 encode(k, w, dataptrs, coding ptrs, size): This encodes using the optimization.w must be
8, 16 or 32. Note,m is not needed because it is assumed to equal two, and no matrixis needed because it is
implicit.

• int *reed sol r6 coding matrix(k, w) : Again,w must be 8, 16 or 32. There is no optimization for decoding.
Therefore, this procedure returns the last two rows of the distribution matrix for RAID-6 for decoding purposes.
The first of these rows will be all ones. The second of these rows will have2j in columnj.

• reed sol galois w08 region multby 2(char *region, int nbytes): This performs the fast multiplication by two
in GF (28) using Anvin’s optimization [Anv07]. region must be long-word aligned, andnbytes must be a
multiple of the word size.

• reed sol galois w16 region multby 2(char *region, int nbytes): This performs the fast multiplication by two
in GF (216).

• reed sol galois w32 region multby 2(char *region, int nbytes): This performs the fast multiplication by two
in GF (232).

8.3 Example Programs to Demonstrate Use

There are four example programs to demonstrate the use of theprocedures inreed sol.

• reed sol 01.c: This takes three parameters:k, m andw. It performs a classic Reed-Solomon coding ofk

devices ontom devices, using a Vandermonde-based distribution matrix inGF (2w). w must be 8, 16 or 32.
Each device is set up to holdsizeof(long)bytes. It usesreed sol vandermondecoding matrix() to generate
the distribution matrix, and then procedures fromjerasure.cto perform the coding and decoding.
Example:

UNIX> reed_sol_01 7 7 8 105
<HTML><TITLE>reed_sol_01 7 7 8 105</title>
<h3>reed_sol_01 7 7 8 105</h3>
<pre>
Last m rows of the generator Matrix (GˆT):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 170 114 42 87 78 231
1 38 236 53 233 175 65
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1 64 174 232 52 237 39
1 187 104 210 211 105 186

Encoding Complete:

Data Coding
D0 : 6f c1 a7 58 a0 b4 17 74 C0 : 49 20 ea e8 18 d3 69 9a
D1 : 82 13 7f c0 9f 3f db a4 C1 : 31 d1 63 ef 0b 1d 6c 0e
D2 : b5 90 6d d0 92 ea ac 98 C2 : 0f 05 89 46 fb 75 5d c5
D3 : 44 6a 2b 39 ab da 31 6a C3 : 0d 37 03 f0 80 cd c7 69
D4 : 72 63 74 64 2b 84 a4 5a C4 : 63 43 e9 cc 2a ae 18 5c
D5 : 48 af 72 7d 98 55 86 63 C5 : 4f e9 37 1b 88 4f c0 d7
D6 : 6f c4 72 80 ad b9 1a 81 C6 : d2 af 66 51 82 ba e1 10

Erased 7 random devices:

Data Coding
D0 : 6f c1 a7 58 a0 b4 17 74 C0 : 00 00 00 00 00 00 00 00
D1 : 00 00 00 00 00 00 00 00 C1 : 00 00 00 00 00 00 00 00
D2 : 00 00 00 00 00 00 00 00 C2 : 0f 05 89 46 fb 75 5d c5
D3 : 00 00 00 00 00 00 00 00 C3 : 0d 37 03 f0 80 cd c7 69
D4 : 72 63 74 64 2b 84 a4 5a C4 : 63 43 e9 cc 2a ae 18 5c
D5 : 00 00 00 00 00 00 00 00 C5 : 4f e9 37 1b 88 4f c0 d7
D6 : 00 00 00 00 00 00 00 00 C6 : d2 af 66 51 82 ba e1 10

State of the system after decoding:

Data Coding
D0 : 6f c1 a7 58 a0 b4 17 74 C0 : 49 20 ea e8 18 d3 69 9a
D1 : 82 13 7f c0 9f 3f db a4 C1 : 31 d1 63 ef 0b 1d 6c 0e
D2 : b5 90 6d d0 92 ea ac 98 C2 : 0f 05 89 46 fb 75 5d c5
D3 : 44 6a 2b 39 ab da 31 6a C3 : 0d 37 03 f0 80 cd c7 69
D4 : 72 63 74 64 2b 84 a4 5a C4 : 63 43 e9 cc 2a ae 18 5c
D5 : 48 af 72 7d 98 55 86 63 C5 : 4f e9 37 1b 88 4f c0 d7
D6 : 6f c4 72 80 ad b9 1a 81 C6 : d2 af 66 51 82 ba e1 10

UNIX>

This demonstrates usage ofjerasure matrix encode(), jerasure matrix decode(), jerasure print matrix()
andreed sol vandermondecoding matrix() .

• reed sol 02.c: This takes three parameters:k, m andw. It creates and prints three matrices inGF (2w):

1. A (k +m)× k extended Vandermonde matrix.

2. The(k + m) × k distribution matrix created by converting the extended Vandermonde matrix into one
where the firstk rows are an identity matrix. Then rowk is converted so that it is all ones, and the first
column is also converted so that it is all ones.

3. Them × k coding matrix, which is lastm rows of the above matrix. This is the matrix which is passed
to the encoding/decoding procedures ofjerasure.c. Note that since the first row of this matrix is all ones,
you may setint row k onesof the decoding procedures to one.

Note also thatw may have any value from 1 to 32.
Example:
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UNIX> reed_sol_02 6 4 11
<HTML><TITLE>reed_sol_02 6 4 11</title>
<h3>reed_sol_02 6 4 11</h3>
<pre>
Extended Vandermonde Matrix:

1 0 0 0 0 0
1 1 1 1 1 1
1 2 4 8 16 32
1 3 5 15 17 51
1 4 16 64 256 1024
1 5 17 85 257 1285
1 6 20 120 272 1632
1 7 21 107 273 1911
1 8 64 512 10 80
0 0 0 0 0 1

Vandermonde Generator Matrix (GˆT):

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 1 1 1
1 1879 1231 1283 682 1538
1 1366 1636 1480 683 934
1 1023 2045 1027 2044 1026

Vandermonde Coding Matrix:

1 1 1 1 1 1
1 1879 1231 1283 682 1538
1 1366 1636 1480 683 934
1 1023 2045 1027 2044 1026

UNIX>

This demonstrates usage ofreed sol extendedvandermondematrix() , reed sol big vandermondecoding -
matrix() , reed sol vandermondecoding matrix() andjerasure print matrix() .

• reed sol 03.c: This takes three parameters:k, w andseed. It performs RAID-6 coding using Anvin’s optimiza-
tion [Anv07] in GF (2w), wherew must be 8, 16 or 32. It then decodes usingjerasure matrix decode().
Example:

UNIX> reed_sol_03 9 8 100
<HTML><TITLE>reed_sol_03 9 8 100</title>
<h3>reed_sol_03 9 8 100</h3>
<pre>
Last 2 rows of the Generator Matrix:

1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 29

Encoding Complete:
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Data Coding
D0 : 8b 03 14 e7 85 ee 42 c5 C0 : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea b1 a7 77 C1 : 6e 3e bf 62 de b6 9e 0c
D2 : 44 24 26 69 c3 47 b9 49
D3 : 16 5b 8e 56 5d b3 6d 0d
D4 : b2 45 30 84 25 51 42 73
D5 : 48 ff 19 2d ba 26 c1 37
D6 : 3c 88 be 06 68 25 d9 71
D7 : f5 dd 8d e7 fa b6 51 12
D8 : 6c 5c 1b ba b4 ba 52 5d

Erased 2 random devices:

Data Coding
D0 : 8b 03 14 e7 85 ee 42 c5 C0 : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea b1 a7 77 C1 : 6e 3e bf 62 de b6 9e 0c
D2 : 44 24 26 69 c3 47 b9 49
D3 : 16 5b 8e 56 5d b3 6d 0d
D4 : b2 45 30 84 25 51 42 73
D5 : 00 00 00 00 00 00 00 00
D6 : 3c 88 be 06 68 25 d9 71
D7 : 00 00 00 00 00 00 00 00
D8 : 6c 5c 1b ba b4 ba 52 5d

State of the system after decoding:

Data Coding
D0 : 8b 03 14 e7 85 ee 42 c5 C0 : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea b1 a7 77 C1 : 6e 3e bf 62 de b6 9e 0c
D2 : 44 24 26 69 c3 47 b9 49
D3 : 16 5b 8e 56 5d b3 6d 0d
D4 : b2 45 30 84 25 51 42 73
D5 : 48 ff 19 2d ba 26 c1 37
D6 : 3c 88 be 06 68 25 d9 71
D7 : f5 dd 8d e7 fa b6 51 12
D8 : 6c 5c 1b ba b4 ba 52 5d

UNIX>

This demonstrates usage ofreed sol r6 encode(), reed sol r6 coding matrix() , jerasure matrix decode()
andjerasure print matrix() .

• reed sol 04.c: This simply demonstrates doing fast multiplication by twoin GF (2w) for w ∈ {8, 16, 32}. It
has two parameters :w andseed.

UNIX> reed_sol_04 16 100
<HTML><TITLE>reed_sol_04 16 100</title>
<h3>reed_sol_04 16 100</h3>
<pre>
Short 0: 907 * 2 = 1814
Short 1: 59156 * 2 = 56867
Short 2: 61061 * 2 = 52481
Short 3: 50498 * 2 = 39567
Short 4: 22653 * 2 = 45306
Short 5: 1338 * 2 = 2676
Short 6: 45546 * 2 = 29663
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Short 7: 30631 * 2 = 61262
UNIX>

This demonstrates usage ofreed sol galois w08 region multby 2(), reed sol galois w16 region multby 2()
andreed sol galois w32 region multby 2().

9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines

The filescauchy.handcauchy.cimplement procedures that are specific to Cauchy Reed-Solomon coding. See [BKK+95,
PX06] for detailed descriptions of this kind of coding. The procedures injerasure.h/jerasure.cdo the coding and
decoding. The procedures here simply create coding matrices. We don’t use the Cauchy matrices described in [PX06],
because there is a simple heuristic that creates better matrices:

• Construct the usual Cauchy matrixM such thatM [i, j] = 1
i⊕(m+j) , where division is overGF (2w), ⊕ is XOR

and the addition is regular integer addition.

• For each columnj, divide each element (inGF (2w)) byM [0, j]. This has the effect of turning each element in
row 0 to one.

• Next, for each rowi > 0 of the matrix, do the following:

– Count the number of ones in the bit representation of the row.

– Count the number of ones in the bit representation of the row divided by elementM [i, j] for eachj.

– Whichever value ofj gives the minimal number of ones, if it improves the number ofones in the original
row, divide rowi byM [i, j].

While this does not guarantee an optimal number of ones, it typically generates a good matrix. For example,
supposek = m = w = 3. The matrixM is as follows:

6 7 2
5 2 7
1 3 4

First, we divide column 0 by 6, column 1 by 7 and column 2 by 2, toyield:

1 1 1
4 3 6
3 7 2

Now, we concentrate on row 1. Its bitmatrix representation has 5+7+7 = 19 ones. If we divide it by 4, the bitmatrix
has 3+4+5 = 12 ones. If we divide it by 3, the bitmatrix has 4+3+4 = 11 ones. If we divide it by 6, the bitmatrix has
6+7+3 = 16 ones. So, we replace row 1 with row 1 divided by 3.

We do the same with row 2 and find that it will have the minimal number of ones when it is divided by three. The
final matrix is:

1 1 1
5 1 2
1 4 7

This matrix has 34 ones, a distinct improvement over the original matrix that has 46 ones. The best matrix in [PX06]
has 39 ones. This is because the authors simply find the bestX andY , and do not modify the matrix after creating it.
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9.1 The Procedures in cauchy.c

The procedures are:

• int *cauchy original coding matrix(k, m, w) : This allocates and returns the originally defined Cauchy matrix
from [BKK+95]. This is the same matrix as defined above:M [i, j] = 1

i⊕(m+j) .

• int *cauchy xy coding matrix(k, m, w, int *X, int *Y) : This allows the user to specify setsX andY to define
the matrix. SetX hasm elements ofGF (2w) and setY hask elements. Neither set may have duplicate
elements andX ∩ Y = ∅. The procedure does not double-checkX andY - it assumes that they conform to
these restrictions.

• void cauchy improve coding matrix(k, m, w, matrix) : This improves a matrix using the heuristic above, first
dividing each column by its element in row 0, then improving the rest of the rows.

• int *cauchy good general coding matrix() : This allocates and returns a good matrix. Whenm = 2, w ≤ 11
andk ≤ 1023, it will return the optimal RAID-6 matrix. Otherwise, it generates a good matrix by calling
cauchy original coding matrix() and thencauchy improve coding matrix() . If you need to generate RAID-
6 matrices that are beyond the above parameters, see Section9.3 below.

• int cauchy n ones(int n, w): This returns the number of ones in the bit-matrix representation of the numbern
in GF (2w). It is much more efficient than generating the bit-matrix andcounting ones.

9.2 Example Programs to Demonstrate Use

There are four example programs to demonstrate the use of theprocedures incauchy.h/cauchy.c.

• cauchy 01.c: This takes two parameters:n andw. It calls cauchy n ones()to determine the number of ones
in the bit-matrix representation ofn in GF (2w). Then it convertsn to a bit-matrix, prints it and confirms the
number of ones:

<HTML><title>cauchy_01 5 1</title>
<HTML><h3>cauchy_01 5 1</h3>
<pre>
Converted the value 1 (0x1) to the following bitmatrix:

10000
01000
00100
00010
00001

# Ones: 5
UNIX> cauchy_01 31 5
<HTML><title>cauchy_01 5 31</title>
<HTML><h3>cauchy_01 5 31</h3>
<pre>
Converted the value 31 (0x1f) to the following bitmatrix:

11110
11111
10001
11000
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11100

# Ones: 16
UNIX>

This demonstrates usage ofcauchy n ones(), jerasure matrix to bitmatrix() andjerasure print bitmatrix() .

• cauchy 02.c: This takes four parameters:k, m, w and seed. (In this and the following examples,packet-
size is sizeof(long).) It calls cauchy original coding matrix() to create an Cauchy matrix, converts it to a
bitmatrix then encodes it twice. The first time is withjerasure bitmatrix encode(), and the second is withjera-
sure scheduleencode(), which needs fewer XOR’s. It also decodes twice – once withjerasure bitmatrix decode(),
and once withjerasure scheduledecodelazy(), which requires fewer XOR’s. Example output of the following
command is inhttp://web.eecs.utk.edu/ ˜ plank/plank/jerasure/c02_3_3_3_100.html .

UNIX> cauchy_02 3 3 3 100

This demonstrates usage ofcauchy original coding matrix() , cauchy n ones(), jerasure smart bitmatrix-
to schedule(), jerasure scheduleencode(), jerasure scheduledecodelazy(), jerasure print matrix() and

jerasure get stats().

• cauchy 03.c: This is identical tocauchy 02.c, except that it creates the matrix withcauchy xy coding matrix() ,
and improves it withcauchy improve coding matrix() . The initial matrix, before improvement, is idential to
the on created withcauchy original coding matrix() in cauchy 02.c. Example output of the following com-
mand is inhttp://web.eecs.utk.edu/ ˜ plank/plank/jerasure/c03_3_3_3_100.html .

UNIX> cauchy_03 3 3 3 100

This demonstrates usage ofcauchy xy coding matrix() , cauchy improve coding matrix() , cauchy n ones(),
jerasure smart bitmatrix to schedule(), jerasure scheduleencode(), jerasure scheduledecodelazy(), jerasure-
print matrix() andjerasure get stats().

• cauchy 04.c: Finally, this is identical to the previous two, except it calls cauchy good general coding matrix() .
Note, whenm = 2, w ≤ 11 and k ≤ 1023, these are optimal Cauchy encoding matrices. That’s not
to say that they are optimal RAID-6 matrices (RDP encoding [CEG+04], and Liberation encoding [Pla08]
achieve this), but they are the best Cauchy matrices. Example output of the following command is inhttp:

//web.eecs.utk.edu/ ˜ plank/plank/jerasure/c04_3_3_3_100.html .

UNIX> cauchy_04 3 3 3 100

This demonstrates usage ofcauchy original coding matrix() , cauchy n ones(), jerasure smart bitmatrix-
to schedule(), jerasure scheduleencode(), jerasure scheduledecodelazy(), jerasure print matrix() and

jerasure get stats().

9.3 Extending the Parameter Space for Optimal Cauchy RAID-6Matrices

It is easy to prove that as long ask < 2w, then any matrix with all ones in row 0 and distinct non-zero elements in row
1 is a valid MDS RAID-6 matrix. Therefore, the best RAID-6 matrix for a given value ofw is one whosek elements
in row 1 are thek elements with the smallest number of ones in their bit-matrices.Cauchy.cstores these elements in
global variables fork ≤ 1023 andw ≤ 11. The filecauchy best r6.c is identical tocauchy.cexcept that it includes
these values forw ≤ 32. You will likely get compilation warnings when you use this file, but in my tests, all runs fine.
The reason that these values are not incauchy.cis simply to keep the object files small.
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10 Part 5 of the Library: Minimal Density RAID-6 Coding

Minimal Density RAID-6 codes are MDS codes based on binary matrices which satisfy a lower-bound on the number
of non-zero entries. Unlike Cauchy coding, the bit-matrix elements do not correspond to elements inGF (2w). Instead,
the bit-matrix itself has the proper MDS property. Minimal Density RAID-6 codes perform faster than Reed-Solomon
and Cauchy Reed-Solomon codes for the same parameters. Liberation coding, Liber8tion coding, and Blaum-Roth
coding are three examples of this kind of coding that are supported injerasure.

With each of these codes,m must be equal to two andk must be less than or equal tow. The value ofw has
restrictions based on the code [PBV11]:

• With Liberation coding,w must be a prime number.

• With Blaum-Roth coding,w + 1 must be a prime number.

• With Liber8tion coding,w must equal 8.

The filesliberation.h andliberation.c implement the following procedures:

• int *liberation coding bitmatrix(k, w) : This allocates and returns the bit-matrix for liberation coding. Al-
thoughw must be a prime number greater than 2, this is not enforced by the procedure. If you give it a
non-primew, you will get a non-MDS coding matrix.

• int *liber8tion coding bitmatrix(int k) : This allocates and returns the bit-matrix for liber8tion coding. There
is now parameter becausew must equal 8.

• int *blaum roth coding bitmatrix(int k, int w) : This allocates and returns the bit-matrix for Blaum Roth
coding. As above, althoughw+1 must be a prime number, this is not enforced.

10.1 Example Program to Demonstrate Use

liberation 01.c: This takes three parameters:k, w, andseed. w should be a prime number greater than two andk

must be less than or equal tow. As in other examples,packetsizeis sizeof(long). It sets up a Liberation bit-matrix and
uses it for encoding and decoding. It encodes by converting the bit-matrix to a dumb schedule. The dumb schedule is
used because that schedule cannot be improved upon. For decoding, smart scheduling is used as it gives a big savings
over dumb scheduling. Example output of the following command is inhttp://web.eecs.utk.edu/ ˜ plank/plank/

jerasure/l01_7_7_100.html .

UNIX> liberation_01 7 7 100

This demonstrates usage ofliberation coding bitmatrix() , jerasure dumb bitmatrix to schedule(), jerasure-
scheduleencode(), jerasure scheduledecodelazy(), jerasure print bitmatrix() andjerasure get stats().

11 Example Encoder and Decoder

• encoder.c: This program is used to encode a file using any of the available methods injerasure. It takes seven
parameters:

– inputfile or negative numberS: either the file to be encoded or a negative numberS indicating that a
random file of size−S should be used rather than an existing file
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– k: number of data files

– m: number of coding files

– coding technique: must be one of the following:

∗ reedsol van: callsreed sol vandermondecoding matrix() andjerasure matrix encode()
∗ reedsol r6 op: callsreed sol r6 encode()
∗ cauchyorig: callscauchy original coding matrix() , jerasure matrix to bitmatrix , jerasure smart-

bitmatrix to schedule, andjerasure scheduleencode()
∗ cauchygood: callscauchy good general coding matrix() , jerasure matrix to bitmatrix , jerasure-

smart bitmatrix to schedule, andjerasure scheduleencode()
∗ liberation: callsliberation coding bitmatrix , jerasure smart bitmatrix to schedule, andjerasure-

scheduleencode()
∗ blaumroth: callsblaum roth coding bitmatrix , jerasure smart bitmatrix to schedule, andjerasure-

scheduleencode()
∗ liber8tion: callsliber8tion coding bitmatrix , jerasure smart bitmatrix to schedule, andjerasure-

scheduleencode()

– w: word size

– packetsize: can be set to 0 if not required by the selected coding method

– buffersize: approximate size of data (in bytes) to be read in at a time; will be adjusted to obtain a proper
multiple and can be set to 0 if desired

This program reads ininputfile(or creates random data), breaks the file intok blocks, and encodes the file into
m blocks. It also creates a metadata file to be used for decodingpurposes. It writes all of these into a directory
namedCoding. The output of this program is the rate at which the above functions run and the total rate of
running of the program, both given in MB/sec.

UNIX> ls -l Movie.wmv
-rwxr-xr-x 1 plank plank 55211097 Aug 14 10:52 Movie.wmv
UNIX> encoder Movie.wmv 6 2 liberation 7 1024 500000
Encoding (MB/sec): 1405.3442614500
En_Total (MB/sec): 5.8234765527
UNIX> ls -l Coding
total 143816
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k2.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> echo "" | awk ’{ print 9203712 * 6 }’
55222272
UNIX>

In the above example a 52.7 MB movie file is broken into six dataand two coding blocks using Liberation codes
with w = 7 andpacketsizeof 1K. A buffer of 500000 bytes is specified butencodermodifies the buffer size so
that it is a multiple ofw ∗ packetsize (7 ∗ 1024).
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The new directory,Coding, contains the six filesMovie k1.wmv throughMovie k6.wmv (which are parts of
the original file) plus the two encoded filesMovie m1.wmv andMovie m2.wmv. Note that the file sizes are
multiples of 7 and 1024 as well – the original file was padded with zeros so that it would encode properly. The
metadata file,Movie meta.txt contains all information relevant todecoder.

• decoder.c: This program is used in conjunction withencoderto decode any files remaining after erasures and
reconstruct the original file. The only parameter fordecoderis inputfile, the original file that was encoded. This
file does not have to exist; the file name is needed only to find files created byencoder, which should be in the
Coding directory.

After some number of erasures, the program locates the surviving files fromencoderand recreates the original
file if at leastk of the files still exist. The rate of decoding and the total rate of running the program are given as
output.

Continuing the previous example, suppose that Moviek2.wmv and Moviem1.wmv are erased.

UNIX> rm Coding/Movie_k1.wmv Coding/Movie_k2.wmv
UNIX> mv Movie.wmv Old-Movie.wmv
UNIX> decoder Movie.wmv
Decoding (MB/sec): 1167.8230894030
De_Total (MB/sec): 16.0071713224

UNIX> ls -l Coding
total 215704
-rw-r--r-- 1 plank plank 55211097 Aug 14 11:02 Movie_decode d.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> diff Coding/Movie_decoded.wmv Old-Movie.wmv
UNIX>

This reads in all of the remaining files and createsMovie decoded.wmvwhich, as shown by thediff command,
is identical to the originalMovie.wmv. Note thatdecoderdoes not recreate the lost data files – just the original.

11.1 Judicious Selection of Buffer and Packet Sizes

In our tests, the buffer and packet sizes have as much impact on performance as the code used. This has been demon-
strated multiple times by multiple authors (e.g. [PLS+09, PGM13]). The following timings use the Liberation code to
encode 256MB of randomly created data withk = 6 andw = 2. These were taken in 2014 on a MacBook Pro, and
show how the packet and buffer sizes can impact performance.

UNIX> encoder -268435456 6 2 liberation 7 1024 50000000
Encoding (MB/sec): 1593.9637842733
En_Total (MB/sec): 672.1876668353
UNIX> encoder -268435456 6 2 liberation 7 1024 5000000
Encoding (MB/sec): 2490.9393470499
En_Total (MB/sec): 1383.3866387346
UNIX> encoder -268435456 6 2 liberation 7 10240 5000000
Encoding (MB/sec): 2824.2836957036
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En_Total (MB/sec): 1215.1816805228
UNIX> encoder -268435456 6 2 liberation 7 102400 5000000
Encoding (MB/sec): 1969.8973976058
En_Total (MB/sec): 517.6967197425
UNIX>

When using these routines, one should pay attention to packet and buffer sizes.

12 Changing the Underlying Galois Field

The two programsreed sol test gf andreed sol time gf allow you to change the underlying Galois Field from the
command line. We focus firstreed sol test gf. It takes at least five command line arguments. The first four are k,
m, w andseed. Following that is a specification of the Galois Field, whichuses the procedurecreate gf from argv()
from GF-Complete. If you give it a single dash, it chooses thedefault. The program then creates a generator matrix
for Reed-Solomon coding, encodes and decodes, and makes sure that decoding was successful.

Examples: First, we use the default forw = 8, and then we change it so that it uses a multiplication table,rather
than the SSE technique from [PGM13], which is the default:

UNIX> reed_sol_test_gf 7 4 8 100 -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -</TITLE>
<h3>reed_sol_test_gf 7 4 8 100 -</h3>
<pre>
Last m rows of the generator matrix (GˆT):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encoding and decoding were both successful.
UNIX> reed_sol_test_gf 7 4 8 100 -m TABLE -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -m TABLE -</TITLE>
<h3>reed_sol_test_gf 7 4 8 100 -m TABLE -</h3>
<pre>
Last m rows of the generator matrix (GˆT):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encoding and decoding were both successful.
UNIX>

In the next example, we change the primitive polynomial to a bad value – as such, decoding doesn’t work:

UNIX> reed_sol_test_gf 7 4 8 100 -m SHIFT -p 0x1 -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -m SHIFT -p 0x1 -</T ITLE>
<h3>reed_sol_test_gf 7 4 8 100 -m SHIFT -p 0x1 -</h3>
<pre>
Last m rows of the generator matrix (GˆT):

0 1 0 0 0 0 0
0 33004 0 0 0 0 0
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0 1 0 0 0 0 0
0 0 0 0 0 0 0

Decoding failed for 0!
UNIX>

The programreed sol time gf also takes the number of iterations and a buffer size, and times the performance of
Reed-Solomon coding. Below, we show how the default implementation is much faster than using tables forw = 8:

UNIX> reed_sol_time_gf 7 4 8 100 1000 102400 -
<HTML><TITLE>reed_sol_time_gf 7 4 8 100 1000 102400 -</TIT LE>
<h3>reed_sol_time_gf 7 4 8 100 1000 102400 -</h3>
<pre>
Last m rows of the generator matrix (GˆT):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encode throughput for 1000 iterations: 2006.88 MB/s (0.34 s ec)
Decode throughput for 1000 iterations: 980.71 MB/s (0.70 se c)
UNIX> reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -
<HTML><TITLE>reed_sol_time_gf 7 4 8 100 1000 102400 -m TABL E -</TITLE>
<h3>reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -</h3>
<pre>
Last m rows of the generator matrix (GˆT):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encode throughput for 1000 iterations: 249.56 MB/s (2.74 se c)
Decode throughput for 1000 iterations: 118.02 MB/s (5.79 se c)
UNIX>

Finally, the shell scripttime all gfs argv init.sh uses the commandgf methodsfrom GF-Complete to list a variety
of methods for specifying the underlying Galois Field and times them all. As you can see, forw = 16 andw = 32,
there are some faster methods than the defaults. You should read the GF-Complete manual to learn about them,
because they have some caveats. (Again, these timings are all on my MacBook Pro from 2014).

UNIX> sh time_all_gfs_argv_init.sh
Testing 12 3 8 1370 128 65536 -
Encode throughput for 128 iterations: 2406.96 MB/s (0.04 se c)
Decode throughput for 128 iterations: 1221.93 MB/s (0.08 se c)
Testing 12 3 8 1370 128 65536 -m TABLE -
Encode throughput for 128 iterations: 327.08 MB/s (0.29 sec )
Decode throughput for 128 iterations: 162.64 MB/s (0.59 sec )
Testing 12 3 8 1370 128 65536 -m TABLE -r DOUBLE -
Encode throughput for 128 iterations: 416.53 MB/s (0.23 sec )
Decode throughput for 128 iterations: 201.12 MB/s (0.48 sec )
Testing 12 3 8 1370 128 65536 -m LOG -
Encode throughput for 128 iterations: 279.85 MB/s (0.34 sec )
Decode throughput for 128 iterations: 135.50 MB/s (0.71 sec )
Testing 12 3 8 1370 128 65536 -m SPLIT 8 4 -



12 CHANGING THE UNDERLYING GALOIS FIELD 34

Encode throughput for 128 iterations: 2547.83 MB/s (0.04 se c)
Decode throughput for 128 iterations: 1266.00 MB/s (0.08 se c)
Testing 12 3 8 1370 128 65536 -m COMPOSITE 2 - -
Encode throughput for 128 iterations: 91.27 MB/s (1.05 sec)
Decode throughput for 128 iterations: 45.79 MB/s (2.10 sec)
Testing 12 3 8 1370 128 65536 -m COMPOSITE 2 - -r ALTMAP -
Encode throughput for 128 iterations: 2642.65 MB/s (0.04 se c)
Decode throughput for 128 iterations: 1346.82 MB/s (0.07 se c)
Testing 12 3 16 1370 128 65536 -
Encode throughput for 128 iterations: 1910.75 MB/s (0.05 se c)
Decode throughput for 128 iterations: 947.93 MB/s (0.10 sec )
Testing 12 3 16 1370 128 65536 -m TABLE -
Encode throughput for 128 iterations: 19.48 MB/s (4.93 sec)
Decode throughput for 128 iterations: 9.32 MB/s (10.30 sec)
Testing 12 3 16 1370 128 65536 -m LOG -
Encode throughput for 128 iterations: 272.43 MB/s (0.35 sec )
Decode throughput for 128 iterations: 132.38 MB/s (0.73 sec )
Testing 12 3 16 1370 128 65536 -m SPLIT 16 4 -
Encode throughput for 128 iterations: 1758.13 MB/s (0.05 se c)
Decode throughput for 128 iterations: 890.31 MB/s (0.11 sec )
Testing 12 3 16 1370 128 65536 -m SPLIT 16 4 -r ALTMAP -
Encode throughput for 128 iterations: 2259.65 MB/s (0.04 se c)
Decode throughput for 128 iterations: 1147.83 MB/s (0.08 se c)
Testing 12 3 16 1370 128 65536 -m SPLIT 16 8 -
Encode throughput for 128 iterations: 647.10 MB/s (0.15 sec )
Decode throughput for 128 iterations: 320.29 MB/s (0.30 sec )
Testing 12 3 16 1370 128 65536 -m SPLIT 8 8 -
Encode throughput for 128 iterations: 646.79 MB/s (0.15 sec )
Decode throughput for 128 iterations: 316.62 MB/s (0.30 sec )
Testing 12 3 16 1370 128 65536 -m COMPOSITE 2 - -
Encode throughput for 128 iterations: 162.01 MB/s (0.59 sec )
Decode throughput for 128 iterations: 79.45 MB/s (1.21 sec)
Testing 12 3 16 1370 128 65536 -m COMPOSITE 2 - -r ALTMAP -
Encode throughput for 128 iterations: 2555.99 MB/s (0.04 se c)
Decode throughput for 128 iterations: 1266.64 MB/s (0.08 se c)
Testing 12 3 32 1370 128 65536 -
Encode throughput for 128 iterations: 1230.37 MB/s (0.08 se c)
Decode throughput for 128 iterations: 592.87 MB/s (0.16 sec )
Testing 12 3 32 1370 128 65536 -m GROUP 4 8 -
Encode throughput for 128 iterations: 92.27 MB/s (1.04 sec)
Decode throughput for 128 iterations: 44.65 MB/s (2.15 sec)
Testing 12 3 32 1370 128 65536 -m SPLIT 32 4 -
Encode throughput for 128 iterations: 1207.73 MB/s (0.08 se c)
Decode throughput for 128 iterations: 595.01 MB/s (0.16 sec )
Testing 12 3 32 1370 128 65536 -m SPLIT 32 4 -r ALTMAP -
Encode throughput for 128 iterations: 1641.69 MB/s (0.06 se c)
Decode throughput for 128 iterations: 791.95 MB/s (0.12 sec )
Testing 12 3 32 1370 128 65536 -m SPLIT 32 8 -
Encode throughput for 128 iterations: 424.79 MB/s (0.23 sec )
Decode throughput for 128 iterations: 202.66 MB/s (0.47 sec )
Testing 12 3 32 1370 128 65536 -m SPLIT 8 8 -
Encode throughput for 128 iterations: 423.76 MB/s (0.23 sec )
Decode throughput for 128 iterations: 202.69 MB/s (0.47 sec )
Testing 12 3 32 1370 128 65536 -m COMPOSITE 2 - -
Encode throughput for 128 iterations: 125.19 MB/s (0.77 sec )
Decode throughput for 128 iterations: 60.84 MB/s (1.58 sec)
Testing 12 3 32 1370 128 65536 -m COMPOSITE 2 - -r ALTMAP -
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Encode throughput for 128 iterations: 1793.63 MB/s (0.05 se c)
Decode throughput for 128 iterations: 893.84 MB/s (0.11 sec )
Passed all tests!
UNIX>
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