Jerasure: A Library in C Facilitating Erasure Coding for Storage Applications

Version 2.0

James S. Plank* Kevin M. Greenan
Technical Report UT-EECS-14-721
Department of Electrical Engineering and Computer Science University of Tennessee
Knoxville, TN 37996
http://www.cs.utk.edu/~plank/plank/papers/UT-EECS-14-721.html
Source code: https://bitbucket.org/jimplank/jerasure

This describes revision 2.0 of the code.

Abstract

This paper descibes version 2.0 of jerasure, a library in C that supports erasure coding in storage applications. In this paper, we describe both the techniques and algorithms, plus the interface to the code. Thus, this serves as a quasi-tutorial and a programmer's guide.

Version 2.0 does not change the interface of jerasure 1.2. What it does is change the software for doing the Galois Field back-end. It now uses GF-Complete, which is much more flexible and powerful than the previous Galois Field arithmetic library. In particular, it leverages Intel SIMD instructions so that Reed-Solomon coding may be blazingly fast.

In order to use jerasure, you must first download and install GF-Complete. Both libraries are posted and maintained at bitbucket.com.

If You Use This Library or Document

Please send me an email to let me know how it goes. One of the ways in which I am evaluated both internally and externally is by the impact of my work, and if you have found this library and/or this document useful, I would like to be able to document it. Please send mail to plank@cs.utk.edu.

The library itself is protected by the New BSD License. It is free to use and modify within the bounds of that License. None of the techniques implemented in this library have been patented.

[^0]
Finding the Code

Please download the code from:
https://bitbucket.org/jimplank/jerasure.
Before you compile jerasure, you must download, compile and install GF-Complete. That is available from
https://bitbucket.org/jimplank/gf-complete.
Both libraries use autoconf, which means that you go through the following steps from the main directory:

```
UNIX> ./configure
UNIX> make
UNIX> sudo make install
```

The example programs are in the directory Examples. The source code is in the directory src.

History of Jerasure

This is the third major revision of jerasure. Jerasure's revision history is as follows:

- Revision 1.0: James S. Plank, September, 2007 [Pla07b].
- Revision 1.2: James S. Plank, Scott Simmerman and Catherine D. Schuman. August, 2008 [PSS08]. This revision added Blaum-Roth and Liber8tion coding to the library, an example encoder and decoder, and beefed up examples.
- Revision 1.2A: This is identical to revision 1.2, except it uses the new BSD license instead of the Gnu LGPL license. It is available as a tar file in http://web.eecs.utk.edu/~plank/plank/papers/Jerasure-1.2A.tar.
- Revision 2.0: James S. Plank and Kevin Greenan, January, 2014 [PG14]. This revision changes the back end implementation of Galois Fields to GF-Complete (https://bitbucket.org/jimplank/gf-complete), which allows jerasure to leverage SIMD operations for extremely fast encoding and decoding. All of the examples have been updated, and a few examples have been added to demonstrate how one may tweak the underlying Galois Field to exploit further features of GF-Complete.

Contents

1 Introduction 4
2 The Modules of the Library 5
3 Matrix-Based Coding In General 6
4 Bit-Matrix Coding In General 6
4.1 Using a schedule rather than a bit-matrix 7
5 MDS Codes 8
6 Part 1 of the Library: Galois Field Arithmetic 9
7 Part 2 of the Library: Kernel Routines 9
7.1 Matrix/Bitmatrix/Schedule Creation Routines 11
7.2 Encoding Routines 11
7.3 Decoding Routines 12
7.4 Dot Product Routines 13
7.5 Basic Matrix Operations 13
7.6 Statistics 13
7.7 Example Programs to Demonstrate Use 14
8 Part 3 of the Library: Classic Reed-Solomon Coding Routines 21
8.1 Vandermonde Distribution Matrices 21
8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6 22
8.3 Example Programs to Demonstrate Use 22
9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines 26
9.1 The Procedures in cauchy.c 27
9.2 Example Programs to Demonstrate Use 27
9.3 Extending the Parameter Space for Optimal Cauchy RAID-6 Matrices 28
10 Part 5 of the Library: Minimal Density RAID-6 Coding 29
10.1 Example Program to Demonstrate Use 29
11 Example Encoder and Decoder 29
11.1 Judicious Selection of Buffer and Packet Sizes 31
12 Changing the Underlying Galois Field 32

1 Introduction

Erasure coding for storage applications is growing in importance as storage systems grow in size and complexity. This paper describes jerasure, a library in C that supports erasure coding applications. Jerasure has been designed to be modular, fast and flexible. It is our hope that storage designers and programmers will find jerasure to be a convenient tool to add fault tolerance to their storage systems.

Jerasure supports a horizontal mode of erasure codes. We assume that we have k devices that hold data. To that, we will add m devices whose contents will be calculated from the original k devices. If the erasure code is a Maximum Distance Separable (MDS) code, then the entire system will be able to tolerate the loss of any m devices.

Figure 1: The act of encoding takes the contents of k data devices and encodes them on m coding devices. The act of decoding takes some subset of the collection of $(k+m)$ total devices and from them recalcalates the original k devices of data.

As depicted in Figure 1, the act of encoding takes the original k data devices, and from them calculates m coding devices. The act of decoding takes the collection of $(k+m)$ devices with erasures, and from the surviving devices recalculates the contents of the original k data devices.

Most codes have a third parameter w, which is the word size. The description of a code views each device as having w bits worth of data. The data devices are denoted D_{0} through D_{k-1} and the coding devices are denoted C_{0} through C_{m-1}. Each device D_{i} or C_{j} holds w bits, denoted $d_{i, 0}, \ldots d_{i, w-1}$ and $c_{i, 0}, \ldots c_{i, w-1}$. In reality of course, devices hold megabytes of data. To map the description of a code to its realization in a real system, we do one of two things:

1. When $w \in\{8,16,32\}$, we can consider each collection of w bits to be a byte, short word or word respectively. Consider the case when $w=8$. We may view each device to hold B bytes. The first byte of each coding device will be encoded with the first byte of each data device. The second byte of each coding device will be encoded with the second byte of each data device. And so on. This is how Standard Reed-Solomon coding works, and it should be clear how it works when $w=16$ or $w=32$.
2. Most other codes work by defining each coding bit $c_{i, j}$ to be the bitwise exclusive-or (XOR) of some subset of the other bits. To implement these codes in a real system, we assume that the device is composed of w packets of equal size. Now each packet is calculated to be the bitwise exclusive-or of some subset of the other packets. In this way, we can take advantage of the fact that we can perform XOR operations on whole computer words rather than on bits.

The process is illustrated in Figure 2. In this figure, we assume that $k=4, m=2$ and $w=4$. Suppose that a code is defined such that coding bit $c_{1,0}$ is goverened by the equation:

$$
c_{1,0}=d_{0,0} \oplus d_{1,1} \oplus d_{2,2} \oplus d_{3,3}
$$

where \oplus is the XOR operation. Figure 2 shows how the coding packet corresponding to $c_{1,0}$ is calculated from the data packets corresponding to $d_{0,0}, d_{1,1}, d_{2,2}$ and $d_{3,3}$. We call the size of each packet the packet size, and the size of w packets to be the coding block size. The packetsize must be a multiple of the computer's word size so obviously, the coding block size will be a multiple of $w *$ packetsize.

Figure 2: Although codes are described on systems of w bits, their implementation employs packets that are much larger. Each packet in the implementation corresponds to a bit of the description. This figure is showing how the equation $c_{1,0}=d_{0,0} \oplus d_{1,1} \oplus d_{2,2} \oplus d_{3,3}$ is realized in an implementation.

2 The Modules of the Library

This library is broken into five modules, each with its own header file and implementation in C. Typically, when using a code, one only needs three of these modules: galois, jerasure and one of the others. The modules are:

1. galois.h/galois.c: These are wrappers around GF-Complete so that jerasure's interface from version 1.2 is maintained.
2. jerasure.h/jerasure.c: These are kernel routines that are common to most erasure codes. They do not depend on any module other than galois. They include support for matrix-based coding and decoding, bit-matrix-based coding and decoding, conversion of bit-matrices to schedules, matrix and bit-matrix inversion.
3. reed_sol.h/reed_sol.c: These are procedures for creating generator matrices for systematic Reed-Solomon coding [RS60, Pla97, PD05]. They also include the optimized version of Reed-Solomon encoding for RAID-6 as discussed in [Anv07].
4. cauchy.h/cauchy.c: These are procedures for performing Cauchy Reed-Solomon coding [BKK ${ }^{+} 95$, PX06], which employs a different matrix construction than classic Reed-Solomon coding. We include support for creating optimal Cauchy generator matrices for RAID-6, and for creating generator matrices that are better than those currently published.
5. liberation.h/liberation.c: These are procedures for performing RAID-6 coding and decoding with minimal density MDS codes [PBV11] - the RAID-6 Liberation codes [Pla08], Blaum-Roth codes [BR99] and the RAID-6 Liber8tion code [Pla09]. These are bit-matrix codes that perform much better than the Reed-Solomon variants and better than EVENODD coding [BBBM95]. In some cases, they even outperform RDP [CEG $\left.{ }^{+} 04\right]$, which is the best currently known RAID-6 code.

Each module is described in its own section below. Additionally, there are example programs that show the usage of each module.

3 Matrix-Based Coding In General

The mechanics of matrix-based coding are explained in great detail in [Pla97]. We give a high-level overview here.
Authors' Caveat: We are using old nomenclature of "distribution matrices." In standard coding theory, the "distribution matrix" is the transpose of the Generator matrix. In the next revision of jerasure, we will update the nomenclature to be more consistent with classic coding theory.

Suppose we have k data words and m coding words, each composed of w bits. We can describe the state of a matrix-based coding system by a matrix-vector product as depicted in Figure 3. The matrix is called a distribution matrix and is a $(k+m) \times k$ matrix. The elements of the matrix are numbers in $G F\left(2^{w}\right)$ for some value of w. This means that they are integers between 0 and $2^{w}-1$, and arithmetic is performed using Galois Field arithmetic: addition is equal to XOR, and multiplication is implemented in a variety of ways. The Galois Field arithmetic library in [Pla 07 a] has procedures which implement Galois Field arithmetic.

Figure 3: Using a matrix-vector product to describe a coding system.

The top k rows of the distribution matrix compsose a $k \times k$ identity matrix. The remaining m rows are called the coding matrix, and are defined in a variety of ways [Rab89, Pre89, $\mathrm{BKK}^{+} 95, \mathrm{PD} 05$]. The distribution matrix is multiplied by a vector that contains the data words and yields a product vector containing both the data and the coding words. Therefore, to encode, we need to perform m dot products of the coding matrix with the data.

To decode, we note that each word in the system has a corresponding row of the distribution matrix. When devices fail, we create a decoding matrix from k rows of the distribution that correspond to non-failed devices. Note that this matrix multiplied by the original data equals the k survivors whose rows we selected. If we invert this matrix and multiply it by both sides of the equation, then we are given a decoding equation - the inverted matrix multiplied by the survivors equals the original data.

4 Bit-Matrix Coding In General

Bit-matrix coding is first described in the original Cauchy Reed-Solomon coding paper [$\mathrm{BKK}^{+} 95$]. To encode and decode with a bit-matrix, we expand a distribution matrix in $G F\left(2^{w}\right)$ by a factor of w in each direction to yield
a $w(k+m) \times w k$ matrix which we call a binary distribution matrix $(B D M)$. We multiply that by a $w k$ element vector, which is composed of w bits from each data device. The product is a $w(k+m)$ element vector composed of w bits from each data and coding device. This is depicted in Figure 4. It is useful to visualize the matrix as being composed of $w \times w$ sub-matrices.

Figure 4: Describing a coding system with a bit-matrix-vector product.

As with the matrix-vector product in $G F\left(2^{w}\right)$, each row of the product corresponds to a row of the BDM, and is computed as the dot product of that row and the data bits. Since all elements are bits, we may perform the dot product by taking the XOR of each data bit whose element in the matrix's row is one. In other words, rather than performing the dot product with additions and multiplications, we perform it only with XORs. Moreover, the performance of this dot product is directly related to the number of ones in the row. Therefore, it behooves us to find matrices with few ones.

Decoding with bit-matrices is the same as with matrices over $G F\left(2^{w}\right)$, except now each device corresponds to w rows of the matrix, rather than one. Also keep in mind that a bit in this description corresponds to a packet in the implementation.

While the classic construction of bit-matrices starts with a standard distribution matrix in $G F\left(2^{w}\right)$, it is possible to construct bit-matrices that have no relation to Galois Field arithmetic yet still have desired coding and decoding properties. The minimal density RAID-6 codes work in this fashion.

4.1 Using a schedule rather than a bit-matrix

Consider the act of encoding with a bit-matrix. We give an example in Figure 5, where $k=3, w=5$, and we are calculating the contents of one coding device. The straightforward way to encode is to calculate the five dot products for each of the five bits of the coding device, and we can do that by traversing each of the five rows, performing XORs where there are ones in the matrix.

Figure 5: An example super-row of a bit-matrix for $k=3, w=5$.

Since the matrix is sparse, it is more efficient to precompute the coding operations, rather than traversing the matrix each time one encodes. The data structure that we use to represent encoding is a schedule, which is a list of 5-tuples:

$$
<o p, s_{d}, s_{b}, d_{d}, d_{b}>
$$

where $o p$ is an operation code: 0 for copy and 1 for XOR, s_{d} is the id of the source device and s_{b} is the bit of the source device. The last two elements, d_{d} and d_{b} are the destination device and bit. By convention, we identify devices using integers from zero to $k+m-1$. An id $i<k$ identifies data device D_{i}, and an id $i \geq k$ identifies coding device C_{i-k}.

A schedule for encoding using the bit-matrix in Figure 5 is shown in Figure 6.

$$
\begin{array}{l|l}
<0,0,0,3,0>,<1,1,1,3,0>,<1,2,2,3,0> \\
<0,0,1,3,1>,<1,1,2,3,1>,<1,2,3,3,1>, & c_{0,0}=d_{0,0} \oplus d_{1,1} \oplus d_{2,2} \\
<0,0,2,3,2>,<1,1,2,3,2>,<1,1,3,3,2>,<1,2,4,3,2>, & c_{0,1}=d_{0,1} \oplus d_{1,2} \oplus d_{2,3} \\
<0,0,3,3,3>,<1,1,4,3,3>,<1,2,0,3,3>, & c_{0,2}=d_{0,2} \oplus d_{1,2} \oplus d_{1,3} \oplus d_{2,4} \\
<0,0,4,3,4>,<1,1,0,3,4>,<1,2,0,3,4>,<1,2,1,3,4>. & c_{0,3}=d_{0,3} \oplus d_{1,4} \oplus d_{2,0} \\
c_{0,4}=d_{0,4} \oplus d_{1,0} \oplus d_{2,0} \oplus d_{2,1} \\
\hline \text { (a) }
\end{array}
$$

Figure 6: A schedule of bit-matrix operations for the bit-matrix in Figure 5. (a) shows the schedule, and (b) shows the dot-product equations corresponding to each line of the schedule.

As noted in [HDRT05, Pla08], one can derive schedules for bit-matrix encoding and decoding that make use of common expressions in the dot products, and therefore can perform the bit-matrix-vector product with fewer XOR operations than simply traversing the bit-matrix. This is how RDP encoding works with optimal performance [CEG $\left.{ }^{+} 04\right]$, even though there are more than $k w$ ones in the last w rows of its BDM. We term such scheduling smart scheduling, and scheduling by simply traversing the matrix dumb scheduling.

There are additional techniques for scheduling that work better than what we have implemented here [HLC07, Pla10, PSR12]. Embedding these within jerasure is the topic of future work.

5 MDS Codes

A code is MDS if it can recover the data following the failure of any m devices. If a matrix-vector product is used to define the code, then it is MDS if every combination of k rows composes an invertible matrix. If a bit-matrix is used, then we define a super-row to be a row's worth of $w \times w$ submatrices. The code is MDS if every combination of k super-rows composes an invertible matrix. Again, one may generate an MDS code using standard techniques such as employing a Vandermonde matrix [PD05] or Cauchy matrix [Rab89, BKK ${ }^{+} 95$]. However, there are other constructions that also yield MDS matrices, such as EVENODD coding [BBBM95, BBV96], RDP coding [CEG ${ }^{+} 04$, Bla06], the STAR code [HX05], and the minimal density RAID-6 codes [PBV11].

6 Part 1 of the Library: Galois Field Arithmetic

The files galois.h and galois.c contain procedures for Galois Field arithmetic in $G F\left(2^{w}\right)$ for $1 \leq w \leq 32$. They contains procedures for single arithmetic operations, for XOR-ing a region of bytes, and for performing multiplication of a region of bytes by a constant in $G F\left(2^{8}\right), G F\left(2^{16}\right)$ and $G F\left(2^{32}\right)$. They are wrappers around GF-Complete, and can inherit all of the functionality and flexibility of GF-Complete.

For the purposes of jerasure, the following procedures from galois.h and galois.c are used:

- galois_single_multiply(int \mathbf{a}, int \mathbf{b}, int \mathbf{w}) and galois_single_divide(int \mathbf{a}, int \mathbf{b}, int \mathbf{w}): These perform multiplication and division on single elements \mathbf{a} and \mathbf{b} of $G F\left(2^{\mathbf{w}}\right)$.
- galois_region_xor(char *r1, char *r2, char *r3, int nbytes): This XORs two regions of bytes, $\mathbf{r} \mathbf{1}$ and $\mathbf{r} 2$ and places the sum in $\mathbf{r} 3$. Note that $\mathbf{r} 3$ may be equal to $\mathbf{r} 1$ or $\mathbf{r} 2$ if we are replacing one of the regions by the sum. Nbytes must be a multiple of the machine's long word size.
- galois_w08_region_multiply(char *region, int multby, int nbytes, char *r2, int add): This multiplies an entire region of bytes by the constant multby in $G F\left(2^{8}\right)$. If $\mathbf{r} \mathbf{2}$ is NULL then region is overwritten. Otherwise, if add is zero, the products are placed in $\mathbf{r 2}$. If add is non-zero, then the products are XOR'd with the bytes in $\mathbf{r} 2$.
- galois_w16_region_multiply () and galois_w32_region_multiply() are identical to galois_w08_region_multiply(), except they are in $G F\left(2^{16}\right)$ and $G F\left(2^{32}\right)$ respectively.
- galois_change_technique(gf_t *gf, int w): This allows you to create your own custom implementation of Galois Field arithmetic from GF-Complete. To do this, please see create_gf_from_argv() or gf_init_hard() from the GF-Complete manual. Those procedures allow you to create a gf_t, and then you call galois_change_technique() with this gf_t to make jerasure use it.
- galois_init_field() and galois_init_composite_field() will create gf_t pointers using the parameters from GFComplete. We recommend, however, that you use create_gf_from_argv() or gf_init_hard() instead.
- galois_get_field_ptr(int \boldsymbol{w}) returns a pointer to the gf_t that is currently being used by jerasure for the given value of w.

In section 12, we go over some example programs that change the Galois Field. We don't do it here, because we feel it clutters up the description at this point.

7 Part 2 of the Library: Kernel Routines

The files jerasure.h and jerasure.c implement procedures that are common to many aspects of coding. We give example programs that make use of them in Section 7.7 below.

Before describing the procedures that compose jerasure.c, we detail the arguments that are common to multiple procedures:

- int \mathbf{k} : The number of data devices.
- int m: The number of coding devices.
- int w: The word size of the code.
- int packetsize: The packet size as defined in section 1. This must be a multiple of sizeof(long).
- int size: The total number of bytes per device to encode/decode. This must be a multiple of sizeof(long). If a bit-matrix is being employed, then it must be a multiple of packetsize $* \mathbf{w}$. If one desires to encode data blocks that do not conform to these restrictions, than one must pad the data blocks with zeroes so that the restrictions are met.
- int *matrix: This is an array with $\mathbf{k} * \mathbf{m}$ elements that represents the coding matrix - i.e. the last \mathbf{m} rows of the distribution matrix. Its elements must be between 0 and $2^{\mathbf{w}}-1$. The element in row i and column j is in matrix [$\mathbf{i} * \mathbf{k}+\mathbf{j}]$.
- int *bitmatrix: This is an array of $\mathbf{w} * \mathbf{m} * \mathbf{w} * \mathbf{k}$ elements that compose the last $\mathbf{w m}$ rows of the BDM. The element in row i and column j is in bitmatrix $[\mathbf{i} * \mathbf{k} * \mathbf{w}+\mathbf{j}]$.
- char $* *$ data_ptrs: This is an array of \mathbf{k} pointers to size bytes worth of data. Each of these must be long word aligned.
- char **coding_ptrs: This is an array of \mathbf{m} pointers to size bytes worth of coding data. Each of these must be long word aligned.
- int *erasures: This is an array of id's of erased devices. Id's are numbers between 0 and $\mathbf{k + m} \mathbf{- 1}$ as described in Section 4.1. If there are e erasures, then elements 0 through $e-1$ of erasures identify the erased devices, and erasures $[e]$ must equal -1 .
- int *erased: This is an alternative way of specifying erasures. It is a $\mathbf{k + m}$ element array. Element i of the array represents the device with id i. If erased[i] equals 0 , then device i is working. If erased $[i]$ equals 1 , then it is erased.
- int ${ }^{* *}$ schedule: This is an array of 5-element integer arrays. It represents a schedule as defined in Section 4.1. If there are o operations in the schedule, then schedule must have at least $o+1$ elements, and schedule[$o][0]$ should equal -1 .
- int *** cache: When \mathbf{m} equals 2 , there are few enough combinations of failures that one can precompute all possible decoding schedules. This is held in the cache variable. We will not describe its structure - just that it is an (int ***).
- int row_k_ones: When $m>1$ and the first row of the coding matrix is composed of all ones, then there are times when we can improve the performance of decoding by not following the methodology described in Section 3. This is true when coding device zero is one of the survivors, and more than one data device has been erased. In this case, it is better to decode all but one of the data devices as described in Section 3, but decode the last data device using the other data devices and coding device zero. For this reason, some of the decoding procedures take a paramater row_k_ones, which should be one if the first row of matrix is all ones. The same optimization is available when the first w rows of bitmatrix compose k identity matrices - row_k_ones should be set to one when this is true as well.
- int *decoding_matrix: This is a $k \times k$ matrix or $w k \times w k$ bit-matrix that is used to decode. It is the matrix constructed by employing relevant rows of the distribution matrix and inverting it.
- int *dm_ids: As described in Section 3, we create the decoding matrix by selecting k rows of the distribution matrix that correspond to surviving devices, and then inverting that matrix. This yields decoding_matrix. The product of decoding_matrix and these survivors is the original data. dm_ids is a vector with k elements that contains the id's of the devices corresponding to the rows of the decoding matrix. In other words, this contains the id's of the survivors. When decoding with a bit-matrix dm_ids still has k elements - these are the id's of the survivors that correspond to the k super-rows of the decoding matrix.

7.1 Matrix/Bitmatrix/Schedule Creation Routines

When we use an argument from the list above, we omit its type for brevity.

- int *jerasure_matrix_to_bitmatrix(k, m, w, matrix): This converts a $m \times k$ matrix in $G F\left(2^{w}\right)$ to a $w m \times w k$ bit-matrix, using the technique described in $\left[\mathrm{BKK}^{+} 95\right]$. If matrix is a coding matrix for an MDS code, then the returned bit-matrix will also describe an MDS code.
- int **jerasure_dumb_bitmatrix_to_schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a schedule of coding operations using the straightforward technique of simply traversing each row of the matrix and scheduling XOR operations whenever a one is encountered.
- int **jerasure_smart_bitmatrix_to_schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a schedule of coding operations using the optimization described in [Pla08]. Basically, it tries to use encoded bits (or decoded bits) rather than simply the data (or surviving) bits to reduce the number of XORs. Note, that when a smart schedule is employed for decoding, we don't need to specify row_k_ones, because the schedule construction technique automatically finds this optimization.
- int ${ }^{* * *} \mathbf{j e r a s u r e}$ _generate_schedule_cache($\mathbf{k}, \mathbf{m}, \mathbf{w}$, bitmatrix, int smart): This only works when $m=2$. In this case, it generates schedules for every combination of single and double-disk erasure decoding. It returns a cache of these schedules. If smart is one, then jerasure_smart_bitmatrix_to_schedule () is used to create the schedule. Otherwise, jerasure_dumb_bitmatrix_to_schedule() is used.
- void jerasure_free_schedule(schedule): This frees all allocated memeory for a schedule that is created by either jerasure_dumb_bitmatrix_to_schedule() or jerasure_smart_bitmatrix_to_schedule().
- void jerasure_free_schedule_cache(\mathbf{k}, \mathbf{m}, cache): This frees all allocated data for a schedule cache created by jerasure_generate_schedule_cache().

7.2 Encoding Routines

- void jerasure_do_parity(k, data_ptrs, char *parity_ptr, size): This calculates the parity of size bytes of data from each of k regions of memory accessed by data_ptrs. It puts the result into the size bytes pointed to by parity_ptr. Like each of data_ptrs, parity_ptr must be long word aligned, and size must be a multiple of sizeof(long).
- void jerasure_matrix_encode(\mathbf{k}, \mathbf{m}, w, matrix, data_ptrs, coding_ptrs, size): This encodes with a matrix in $G F\left(2^{w}\right)$ as described in Section 3 above. w must be $\in\{8,16,32\}$.
- void jerasure_bitmatrix_encode(\mathbf{k}, \mathbf{m}, w, bitmatrix, data_ptrs, coding_ptrs, size, packetsize): This encodes with a bit-matrix. Now w may be any number between 1 and 32 .
- void jerasure_schedule_encode(\mathbf{k}, \mathbf{m}, \mathbf{w}, schedule, data_ptrs, coding_ptrs, size, packetsize): This encodes with a schedule created from either jerasure_dumb_bitmatrix_to_schedule() or jerasure_smart_bitmatrix_to_schedule().

7.3 Decoding Routines

Each of these returns an integer which is zero on success or -1 if unsuccessful. Decoding can be unsuccessful if there are too many erasures.

- int jerasure_matrix_decode(\mathbf{k}, \mathbf{m}, w matrix, row_k_ones, erasures, data_ptrs, coding_ptrs, size): This decodes using a matrix in $G F\left(2^{w}\right), w \in\{8,16,32\}$. This works by creating a decoding matrix and performing the matrix/vector product, then re-encoding any erased coding devices. When it is done, the decoding matrix is discarded. If you want access to the decoding matrix, you should use jerasure_make_decoding_matrix() below.
- int jerasure_bitmatrix_decode(k, m, w bitmatrix, row_k_ones, erasures, data_ptrs, coding_ptrs, size, packetsize): This decodes with a bit-matrix rather than a matrix. Note, it does not do any scheduling - it simply creates the decoding bit-matrix and uses that directly to decode. Again, it discards the decoding bit-matrix when it is done.
- int jerasure_schedule_decode_lazy(k, m, w bitmatrix, erasures, data_ptrs, coding_ptrs, size, packetsize, int smart): This decodes by creating a schedule from the decoding matrix and using that to decode. If smart is one, then jerasure_smart_bitmatrix_to_schedule() is used to create the schedule. Otherwise, jerasure_dumb_bitmatrix_to_schedule() is used. Note, there is no row_k_ones, because if smart is one, the schedule created will find that optimization anyway. This procedure is a bit subtle, because it does a little more than simply create the decoding matrix - it creates it and then adds rows that decode failed coding devices from the survivors. It derives its schedule from that matrix. This technique is also employed when creating a schedule cache using jerasure_generate_schedule_cache(). The schedule and all data structures that were allocated for decoding are freed when this procedure finishes.
- int jerasure_schedule_decode_cache(\mathbf{k}, \mathbf{m}, w cache, erasures, data_ptrs, coding_ptrs, size, packetsize): This uses the schedule cache to decode when $m=2$.
- int jerasure_make_decoding_matrix(\mathbf{k}, \mathbf{m}, w matrix, erased, decoding_matrix, dm_ids): This does not decode, but instead creates the decoding matrix. Note that both decoding_matrix and dm_ids should be allocated and passed to this procedure, which will fill them in. Decoding_matrix should have k^{2} integers, and dm_ids should have k integers.
- int jerasure_make_decoding_bitmatrix(k, m, w matrix, erased, decoding_matrix, dm_ids): This does not decode, but instead creates the decoding bit-matrix. Again, both decoding_matrix and dm_ids should be allocated and passed to this procedure, which will fill them in. This time decoding_matrix should have $k^{2} w^{2}$ integers, while dm_ids still has k integers.
- int *jerasure_erasures_to_erased (k, m, erasures): This converts the specification of erasures defined above into the specification of erased also defined above.

7.4 Dot Product Routines

- void jerasure_matrix_dotprod(k, w, int *matrix_row, int *src_ids, int dest_id, data_ptrs, coding_ptrs, size): This performs the multiplication of one row of an encoding/decoding matrix times data/survivors. The id's of the source devices (corresponding to the id's of the vector elements) are in srcids. The id of the destination device is in dest_id. w must be $\in\{8,16,32\}$. When a one is encountered in the matrix, the proper XOR/copy operation is performed. Otherwise, the operation is multiplication by the matrix element in $G F\left(2^{w}\right)$ and an XOR into the destination.
- void jerasure_bitmatrix_dotprod (k, w, int *bitmatrix_row, int *src_ids, int dest_id, data_ptrs, coding_ptrs, size, packetsize): This is the analogous procedure for bit-matrices. It performs w dot products according to the w rows of the matrix specified by bitmatrix_row.
- void jerasure_do_scheduled_operations(char **ptrs, schedule, packetsize): This performs a schedule on the pointers specified by ptrs. Although w is not specified, it performs the schedule on w (packetsize) bytes. It is assumed that ptrs is the right size to match schedule. Typically, this is $k+m$.

7.5 Basic Matrix Operations

- int jerasure_invert_matrix(int *mat, int *inv, int rows, int w): This inverts a (rows \times rows) matrix in $G F\left(2^{w}\right)$. It puts the result in inv, which must be allocated to contain rows ${ }^{2}$ integers. The matrix mat is destroyed after the inversion. It returns 0 on success, or -1 if the matrix was not invertible.
- int jerasure_invert_bitmatrix(int *mat, int *inv, int rows): This is the analogous procedure for bit-matrices. Obviously, one can call jerasure_invert_matrix $($) with $w=1$, but this procedure is faster.
- int jerasure_invertible_matrix(int *mat, int rows, int w): This does not perform the inversion, but simply returns 1 or 0 , depending on whether mat is invertible. It destroys mat.
- int jerasure_invertible_bitmatrix(int *mat, int rows): This is the analogous procedure for bit-matrices.
- void jerasure_print_matrix(int *matrix, int rows, int cols, int w): This prints a matrix composed of elements in $G F\left(2^{w}\right)$ on standard output. It uses w to determine spacing.
- void jerasure_print_bitmatrix(int *matrix, int rows, int cols, int w): This prints a bit-matrix on standard output. It inserts a space between every w characters, and a blank line after every w lines. Thus super-rows and super-columns are easy to identify.
- int *jerasure_matrix_multiply(int *m1, int *m2, int $\mathbf{r} 1$, int $\mathbf{c} 1$, int $\mathbf{r 2}$, int $\mathbf{c 2}$, int \mathbf{w}): This performs matrix multiplication in $G F\left(2^{w}\right)$. The matrix $\mathbf{m} \mathbf{1}$ should be a $(\mathbf{r} \mathbf{1} \times \mathbf{c} \mathbf{1})$ matrix, and $\mathbf{m} \mathbf{2}$ should be a $(\mathbf{r} \mathbf{2} \times \mathbf{c} 2)$ matrix. Obviously, $\mathbf{c} 1$ should equal $\mathbf{r} 2$. It will return a $(\mathbf{r} 1 \times \mathbf{c} 2)$ matrix equal to the product.

7.6 Statistics

Finally, jerasure.c keeps track of three quantities:

- The number of bytes that have been XOR'd using galois_region_xor().
- The number of bytes that have been multiplied by a constant in $G F\left(2^{w}\right)$, using galois_w08_region_multiply(), galois_w16_region_multiply() or galois_w32_region_multiply().
- The number of bytes that have been copied using memcpy().

There is one procedure that allows access to those values:

- void jerasure_get_stats(double *fill_in): The argument fill_in should be an array of three doubles. The procedure will fill in the array with the three values above in that order. The unit is bytes. After calling jerasure_getstats(), the counters that keep track of the quantities are reset to zero.

The procedure galois_w08_region_multiply() and its kin have a parameter that causes it to XOR the product with another region with the same overhead as simply performing the multiplication. For that reason, when these procedures are called with this functionality enabled, the resulting XORs are not counted with the XOR's performed with galois_region_xor().

7.7 Example Programs to Demonstrate Use

In the Examples directory, there are eight programs that demonstrate nearly every procedure call in jerasure.c. They are named jerasure_ $0 \boldsymbol{x}$ for $0<x \leq 8$. There are also programs to demonstrate Reed-Solomon coding, Cauchy Reed-Solomon coding and Liberation coding. Finally, there are programs that encode and decode files.

All of the example programs, with the exception of the encoder and decoder emit HTML as output. Many may be read easily as text, but some of them format better with a web browser.

- jerasure_01.c: This takes three parameters: r, c and w. It creates an $r \times c$ matrix in $G F\left(2^{w}\right)$, where the element in row i, column j is equal to $2^{c i+j}$ in $G F\left(2^{w}\right)$. Rows and columns are zero-indexed. Here is an example athough it emits HTML, it is readable easily as text:

```
UNIX> jerasure_01 3 15 8
<HTML><TITLE>jerasure_01 3 15 8</TITLE>
<h3>jerasure_01 3 15 8</h3>
<pre>
    1
    38
96 192 157 39 78 156 37 74 148 53 106 212 181 119 238
UNIX>
```

This demonstrates usage of jerasure_print_matrix() and galois_single_multiply().

- jerasure_02.c: This takes three parameters: r, c and w. It creates the same matrix as in jerasure_01, and then converts it to a $r w \times c w$ bit-matrix and prints it out. Example:

```
UNIX> jerasure_01 3 10 4
<HTML><TITLE>jerasure_01 3 10 4</TITLE>
<h3>jerasure_01 3 10 4</h3>
<pre>
    1
    7
    6
UNIX> jerasure_02 3 10 4
<HTML><TITLE>jerasure_02 3 10 4</TITLE>
<h3>jerasure_02 3 10 4</h3>
<pre>
1000 0001 0010 0100 1001 0011 0110 1101 1010 0101
0 1 0 0 1 0 0 1 ~ 0 0 1 1 ~ 0 1 1 0 ~ 1 1 0 1 ~ 1 0 1 0 ~ 0 1 0 1 ~ 1 0 1 1 ~ 0 1 1 1 ~ 1 1 1 1 ,
0010 0100 1001 0011 0110 1101 1010 0101 1011 0111
```

```
0001 0010 0100 1001 0011 0110 1101 1010 0101 1011
1011}0111 1111 1110 1100 1000 0001 0010 0100 1001
1110 1100 1000 0001 0010 0100 1001 0011 0110 1101
1111 1110 1100 1000 0001 0010 0100 1001 0011 0110
0111 1111 1110 1100 1000 0001 0010 0100 1001 0011
0011 0110 1101 1010 0101 1011 0111 1111 1110 1100
1010 0101 1011 0111 1111 1110 1100 1000 0001 0010
1101 1010 0101 1011 0111 1111 1110 1100 1000 0001
0110 1101 1010 0101 1011 0111 1111 1110 1100 1000
UNIX>
```

This demonstrates usage of jerasure_print_bitmatrix() and jerasure_matrix_to_bitmatrix().

- jerasure_03.c: This takes three parameters: k and w. It creates a $k \times k$ Cauchy matrix in $G F\left(2^{w}\right)$, and tests invertibility.
The parameter k must be less than 2^{w}. The element in row i, column j is set to:

$$
\frac{1}{i \oplus\left(2^{w}-j-1\right)}
$$

where division is in $G F\left(2^{w}\right), \oplus$ is XOR and subtraction is regular integer subtraction. When $k>2^{w-1}$, there will be i and j such that $i \oplus\left(2^{w}-j-1\right)=0$. When that happens, we set that matrix element to zero.
After creating the matrix and printing it, we test whether it is invertible. If $k \leq 2^{w-1}$, then it will be invertible. Otherwise it will not. Then, if it is invertible, it prints the inverse, then multplies the inverse by the original matrix and prints the product which is the identity matrix. Examples:

```
UNIX> jerasure_03 4 3
<HTML><TITLE>jerasure_03 4 3</TITLE>
<h3>jerasure_03 4 3</h3>
<pre>
The Cauchy Matrix:
4 3 27
34 7 2
2743
7 2 3 4
Invertible: Yes
Inverse:
125 3
2}1133
5 3 1 2
3 5 2 1
Inverse times matrix (should be identity):
100}
0}110
0}001
0 0 0 1
UNIX> jerasure_03 5 3
<HTML><TITLE>jerasure_03 5 3</TITLE>
<h3>jerasure_03 5 3</h3>
```

```
<pre>
The Cauchy Matrix:
4 3 2 7 6
34725
2 7 4 3 1
7 2 3 4 0
6 5 1 0 4
Invertible: No
UNIX>
```

This demonstrates usage of jerasure_print_matrix(), jerasure_invertible_matrix(), jerasure_invert_matrix() and jerasure_matrix_multiply().

- jerasure_04.c: This does the exact same thing as jerasure_03, except it uses jerasure_matrix_to_bitmatrix() to convert the Cauchy matrix to a bit-matrix, and then uses the bit-matrix operations to test invertibility and to invert the matrix. Examples:

```
UNIX> jerasure_04 4 3
<HTML><TITLE>jerasure_04 4 3</TITLE>
<h3>jerasure_04 4 3</h3>
<pre>
The Cauchy Bit-Matrix:
0 1 0 1 0 1 0 0 1 1 1 1
0 1 1 1 1 1 1 0 1 1 0 0
101 011 010 110
101 010 111 001
111 011 100 101
0 1 1 1 0 1 1 1 0 0 1 0
001 111 010 101
101 100 011 111
0 1 0 1 1 0 1 0 1 ~ 0 1 1
111001 101 010
100 101 111 011
110 010 011 101
Invertible: Yes
Inverse:
100 001 110 101
010101 001 111
0 0 1 0 1 0 1 0 0 ~ 0 1 1
001 100 101 110
101 010 111 001
0 1 0 0 0 1 0 1 1 1 0 0
110101 100 001
0 0 1 1 1 1 0 1 0 1 0 1
100011001010
101 110 001 100
1 1 1 0 0 1 1 0 1 0 1 0
```

```
011 100 010 001
Inverse times matrix (should be identity):
100 000 000 000
010 000 000 000
0 0 1 0 0 0 0 0 0 0 0 0
000100 000 000
000 010 000 000
000001 000 000
000 000 100 000
000 000 010 000
000 000 001 000
000 000 000 100
000 000 000 010
000 000 000 001
UNIX> jerasure_04 5 3
<HTML><TITLE>jerasure_04 5 3</TITLE>
<h3>jerasure_04 5 3</h3>
<pre>
The Cauchy Bit-Matrix:
010101 001 111 011
011 111 101 100 110
101 011 010 110 111
101 010 111 001 110
111 011 100 101 001
011 101 110 010 100
001 111 010 101 100
101 100 011 111 010
010110101 011 001
111 001 101 010 000
100 101 111 011 000
110 010 011 101 000
011 110 100 000 010
110001 010 000 011
111 100 001 000 101
Invertible: No
UNIX>
```

This demonstrates usage of jerasure_print_bitmatrix(), jerasure_matrix_to_bitmatrix(), jerasure_invertible_bitmatrix(), jerasure_invert_bitmatrix() and jerasure_matrix_multiply().

- jerasure_05.c: This takes five parameters: k, m, w, size and an integer seed to a random number generator, and performs a basic Reed-Solomon coding example in $G F\left(2^{w}\right)$. w must be either 8,16 or 32 , and the sum $k+m$ must be less than or equal to 2^{w}. The total number of bytes for each device is given by size which must be a multiple of sizeof(long). It first sets up an $m \times k$ Cauchy coding matrix where element i, j is:

$$
\frac{1}{i \oplus(m+j)}
$$

where division is in $G F\left(2^{w}\right)$, \oplus is XOR, and addition is standard integer addition. It prints out these m rows. The program then creates k data devices each with size bytes of random data and encodes them into m coding devices using jerasure_matrix_encode(). It prints out the data and coding in hexadecimal- one byte is represented by 2 hex digits. Next, it erases m random devices from the collection of data and coding devices, and prints the resulting state. Then it decodes the erased devices using jerasure_matrix_decode() and prints the restored state. Next, it shows what the decoding matrix looks like when the first m devices are erased. This matrix is the inverse of the last k rows of the distribution matrix. And finally, it uses jerasure_matrix_dotprod() to show how to explicitly calculate the first data device from the others when the first m devices have been erased. Here is an example for $w=8$ with 3 data devices and 4 coding devices each with a size of 8 bytes:

```
UNIX> jerasure_05 3 4 8 8 100
<HTML><TITLE>jerasure_05 3 4 8 8 100</TITLE>
<h3>jerasure_05 3 4 8 8 100</h3>
<pre>
The Coding Matrix (the last m rows of the Generator Matrix G^T):
    71 167 122
167 71 186
122 186 71
186 122 167
Encoding Complete:
Data Coding
D0 : 8b e3 eb 02 03 5f c5 99 C0 : ab 09 6d 49 24 e2 6e ae
D1 : 14 2f f4 2b e7 72 85 b3 C1 : ee ee bb 70 26 c2 b3 9c
D2 : 85 eb 30 9a ee d4 5d b1 C2 : 69 c0 33 e8 1a d8 c8 e3
c3 : 4b b3 6c 32 45 ae 92 5b
Erased 4 random devices:
Data Coding
D0 : 8b e3 eb 02 03 5f c5 99 C0 : 00 00 00 00 00 00 00 00
D1 : 00 00 00 00 00 00 00 00 C1 : 00 00 00 00 00 00 00 00
D2 : 85 eb 30 9a ee d4 5d b1 C2 : 69 c0 33 e8 1a d8 c8 e3
C3 : 00 00 00 00 00 00 00 00
State of the system after decoding:
Data Coding
D0 : 8b e3 eb 02 03 5f c5 99 C0 : ab 09 6d 49 24 e2 6e ae
D1 : 14 2f f4 2b e7 72 85 b3 C1 : ee ee bb 70 26 c2 b3 9c
D2 : 85 eb 30 9a ee d4 5d b1 C2 : 69 c0 33 e8 1a d8 c8 e3
C3 : 4b b3 6c 32 45 ae 92 5b
Suppose we erase the first 4 devices. Here is the decoding matrix:
130 25 182
252 221 25
108 252 130
And dm_ids:
    4 6
```

```
After calling jerasure_matrix_dotprod, we calculate the value of device #0 to be:
D0 : 8b e3 eb 02 03 5f c5 99
UNIX>
```

Referring back to the conceptual model in Figure 3, it should be clear in this encoding how the first w bits of C_{0} are calculated from the first w bits of each data device:

$$
\text { byte } 0 \text { of } C_{0}=\left(71 \times \text { byte } 0 \text { of } D_{0}\right) \oplus\left(167 \times \text { byte } 0 \text { of } D_{1}\right) \oplus\left(122 \times \text { byte } 0 \text { of } D_{2}\right)
$$

where multiplication is in $G F\left(2^{8}\right)$.
However, keep in mind that the implementation actually performs dot products on groups of bytes at a time. So in this example, where each device holds 8 bytes, the dot product is actually:

$$
8 \text { bytes of } C_{0}=\left(71 \times 8 \text { bytes of } D_{0}\right) \oplus\left(167 \times 8 \text { bytes of } D_{1}\right) \oplus\left(122 \times 8 \text { bytes of } D_{2}\right)
$$

This is accomplished using galois_w08_region_multiply().
Here is a similar example, this time with $w=16$ and each device holding 16 bytes:

```
UNIX> jerasure_05 3 4 16 16 102
<HTML><TITLE>jerasure_05 3 4 16 16 102</TITLE>
<h3>jerasure_05 3 4 16 16 102</h3>
<pre>
The Coding Matrix (the last m rows of the Generator Matrix G^T):
52231 20482 30723
20482 52231 27502
30723 27502 52231
27502 30723 20482
Encoding Complete:
Data Coding
D0 : 5596 1e69 b292 a935 f01a 77b8 b22e 9a70 c0 : 122e 518d c2c7 315c 9c76 2591 1a5a 397c
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad c1 : 7741 f8c4 765c a408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 e4e0 3969 C2 : 9b0d c474 e654 387a e4b7 d5fb 2d8c cdb5
C3 : eb25 24d4 6e49 e736 4c9e 7ab6 0cd2 d2fa
```

Erased 4 random devices:
Data
DO : 00000000000000000000000000000000
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad
CO : $00000000 \quad 0000000000000000 \quad 0000 \quad 0000$
C1 : 7741 f8c4 765c a408 7f07 b937 b493 2730
C2 : 00000000000000000000000000000000
C3: $0000 \quad 0000 \quad 0000 \quad 0000 \quad 0000 \quad 0000 \quad 0000 \quad 0000$
State of the system after decoding:
Data
D0 : 5596 1e69 b292 a935 f01a 77b8 b22e 9a70
D1: f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1 : 7741 f8c 4765 c a 4087 f 07 b 937 b493 2730
C0 : 122e 518d c2c7 315c 9c76 2591 1a5a 397c
D2 : $4988470 e 24 c 8182 a \operatorname{a} 7 f 445 b 2$ e4e0 $3969 \quad \mathrm{C} 2$: 9b0d c474 e654 387a e4b7 d5fb 2d8c cdb5
c3 : eb25 24d4 6e49 e736 4c9e 7ab6 0cd2 d2fa

```
Suppose we erase the first 4 devices. Here is the decoding matrix:
    130 260 427
    252 448 260
    108 252 130
And dm_ids:
    4 5 6
After calling jerasure_matrix_dotprod, we calculate the value of device #0 to be:
D0 : 5596 1e69 b292 a935 f01a 77b8 b22e 9a70
UNIX>
```

In this encoding, the 8 16-bit half-words of C_{0} are calculated as:

$$
\left(52231 \times 8 \text { half-words of } D_{0}\right) \oplus\left(20482 \times 8 \text { half-words of } D_{1}\right) \oplus\left(30723 \times 8 \text { half-words of } D_{2}\right)
$$

using galois_w16_region_multiply().

This program demonstrates usage of jerasure_matrix_encode(), jerasure_matrix_decode(), jerasure_print_matrix(), jerasure_make_decoding_matrix() and jerasure_matrix_dotprod().

- jerasure_06.c: This takes five parameters: k, m, w, packetsize and seed, and performs a similar example to jerasure_05, except it uses Cauchy Reed-Solomon coding in $G F\left(2^{w}\right)$, converting the coding matrix to a bitmatrix. The output this time is formatted HTML. $k+m$ must be less than or equal to 2^{w} and packetsize must be a multiple of sizeof(long). It sets up each device to hold a total of $w *$ packetsize bytes. Here, packets are numbered p_{0} through p_{w-1} for each device. It then performs the same encoding and decoding as the previous example but with the corresponding bit-matrix procedures.
The HTML file at http : //web.eecs.utk.edu/~plank/plank/jerasure/j06_3_4_3_8_100.html shows the output of

UNIX> jerasure_06 34438100
In this encoding, the first packet of C_{0} is computed according to the six ones in the first row of the coding matrix:

$$
C_{0} p_{0}=D_{0} p_{0} \oplus D_{0} p_{1} \oplus D_{0} p_{2} \oplus D_{1} p_{2} \oplus D_{2} p_{0} \oplus D_{2} p_{2}
$$

These dotproducts are accomplished with galois_region_xor() .
This program demonstrates usage of jerasure_bitmatrix_encode(), jerasure_bitmatrix_decode(), jerasure_print_bitmatrix(), jerasure_make_decoding_bitmatrix() and jerasure_bitmatrix_dotprod().

- jerasure_07.c: This takes four parameters: k, m, w and seed. It performs the same coding/decoding as in jerasure_06, except it uses bit-matrix scheduling instead of bit-matrix operations. The packetsize is set at sizeof(long) bytes. It creates a "dumb" and "smart" schedule for encoding, encodes with them and prints out how many XORs each took. The smart schedule will outperform the dumb one.
Next, it erases m random devices and decodes using jerasure_schedule_decode_lazy(). Finally, it shows how to use jerasure_do_scheduled_operations() in case you need to do so explicitly.
The HTML file at http://web.eecs.utk.edu/~plank/plank/jerasure/j07_3_4_3_102.html shows the output of

```
UNIX> jerasure_07 3 4 3 102
```

This demonstrates usage of jerasure_dumb_bitmatrix_to_schedule(), jerasure_smart_bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_do_scheduled_operations() and jerasure_get_stats().

- jerasure_08.c: This takes three parameters: k, w and a seed, and performs a simple RAID-6 example using a schedule cache. Again, packetsize is sizeof(long). It sets up a RAID-6 coding matrix whose first row is composed of ones, and where the element in column j of the second row is equal to 2^{j} in $G F\left(2^{w}\right)$. It converts this to a bit-matrix and creates a smart encoding schedule and a schedule cache for decoding.

It then encodes twice - first with the smart schedule, and then with the schedule cache, by setting the two coding devices as the erased devices. Next it deletes two random devices and uses the schedule cache to decode them. Next, it deletes the first coding devices and recalculates it using jerasure_do_parity() to demonstrate that procedure. Finally, it frees the smart schedule and the schedule cache.
Example - the output of the following command is in http://web.eecs.utk.edu/~plank/plank/jerasure/ j08_7_7_100.html.

UNIX> jerasure_08 77100
This demonstrates usage of jerasure_generate_schedule_cache(), jerasure_smart_bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_cache(), jerasure_free_schedule(), jerasure_free_schedule_cache(), jerasure_get_stats() and jerasure_do_parity().

8 Part 3 of the Library: Classic Reed-Solomon Coding Routines

The files reed_sol.h and reed_sol.c implement procedures that are specific to classic Vandermonde matrix-based ReedSolomon coding, and for Reed-Solomon coding optimized for RAID-6. Refer to [Pla97, PD05] for a description of classic Reed-Solomon coding and to [Anv07] for Reed-Solomon coding optimized for RAID-6. Where not specified, the parameters are as described in Section 7.

8.1 Vandermonde Distribution Matrices

There are three procedures for generating distribution matrices based on an extended Vandermonde matrix in $G F\left(2^{w}\right)$. It is anticipated that only the first of these will be needed for coding applications, but we include the other two in case a user wants to look at or modify these matrices.

- int *reed_sol_vandermonde_coding_matrix $(\mathbf{k}, \mathbf{m}, \mathbf{w})$: This returns the last m rows of the distribution matrix in $G F\left(2^{w}\right)$, based on an extended Vandermonde matrix. This is a $m \times k$ matrix that can be used with the matrix routines in jerasure.c. The first row of this matrix is guaranteed to be all ones. The first column is also guaranteed to be all ones.
- int *reed_sol_extended_vandermonde_matrix(int rows, int cols, w): This creates an extended Vandermonde matrix with rows rows and cols columns in $G F\left(2^{w}\right)$.
- int *reed_sol_big_vandermonde_distribution_matrix(int rows, int cols, w): This converts the extended matrix above into a distribution matrix so that the top cols rows compose an identity matrix, and the remaining rows are in the format returned by reed_sol_vandermonde_coding_matrix().

8.2 Procedures Related to Reed-Solomon Coding Optimized for RAID-6

In RAID-6, m is equal to two. The first coding device, P is calculated from the others using parity, and the second coding device, Q is calculated from the data devices D_{i} using:

$$
Q=\sum_{i=0}^{k-1} 2^{i} D_{i}
$$

where all arithmetic is in $G F\left(2^{w}\right)$. The reason that this is an optimization is that one may implement multiplication by two in an optimized fashion. The following procedures facilitate this optimization.

- int reed_sol_r6_encode $(\mathbf{k}, \mathbf{w}$, data_ptrs, coding_ptrs, size): This encodes using the optimization. w must be 8 , 16 or 32 . Note, m is not needed because it is assumed to equal two, and no matrix is needed because it is implicit.
- int *reed_sol_r6_coding_matrix(k, w): Again, w must be 8,16 or 32. There is no optimization for decoding. Therefore, this procedure returns the last two rows of the distribution matrix for RAID-6 for decoding purposes. The first of these rows will be all ones. The second of these rows will have 2^{j} in column j.
- reed_sol_galois_w08_region_multby_2(char *region, int nbytes): This performs the fast multiplication by two in $G F\left(2^{8}\right)$ using Anvin's optimization [Anv07]. region must be long-word aligned, and nbytes must be a multiple of the word size.
- reed_sol_galois_w16_region_multby_2(char *region, int nbytes): This performs the fast multiplication by two in $G F\left(2^{16}\right)$.
- reed_sol_galois_w32_region_multby_2(char *region, int nbytes): This performs the fast multiplication by two in $G F\left(2^{32}\right)$.

8.3 Example Programs to Demonstrate Use

There are four example programs to demonstrate the use of the procedures in reed_sol.

- reed_sol_01.c: This takes three parameters: k, m and w. It performs a classic Reed-Solomon coding of k devices onto m devices, using a Vandermonde-based distribution matrix in $G F\left(2^{w}\right)$. w must be 8,16 or 32 . Each device is set up to hold sizeof(long) bytes. It uses reed_sol_vandermonde_coding_matrix() to generate the distribution matrix, and then procedures from jerasure.c to perform the coding and decoding.
Example:

```
UNIX> reed_sol_01 7 7 8 105
<HTML><TITLE>reed_sol_01 7 7 8 105</title>
<h3>reed_sol_01 7 7 8 105</h3>
<pre>
Last m rows of the generator Matrix (G^T):
1
1 199 210}240105 121 248
1
1}10170 114 42 87 78 231
1
```

```
    1
    1 187 104 210 211 105 186
Encoding Complete:
Data
Data
D1 : 82 13 7f c0 9f 3f db a4
D2 : b5 90 6d d0 92 ea ac 98
D3 : 44 6a 2b 39 ab da 31 6a
D4 : 72 63 74 64 2b 84 a4 5a
D5 : 48 af 72 7d 98 55 86 63 C5 : 4f e9 37 1b 88 4f c0 d7
Coding
C0 : 49 20 ea e8 18 d3 69 9a
C1 : 31 d1 63 ef 0b 1d 6c 0e
C2 : Of 05 89 46 fb 75 5d c5
C3 : 0d 37 03 f0 80 cd c7 69
C4 : 63 43 e9 cc 2a ae 18 5c
D6 : 6f c4 72 80 ad b9 1a 81 C6 : d2 af 66 51 82 ba e1 10
Erased 7 random devices:
Data
D0 : 6f c1 a7 58 a0 b4 17 74
D1 : 00 00 00 00 00 00 00 00
D2 : 00 00 00 00 00 00 00 00
D3 : 00 00 00 00 00 00 00 00
D3 : 00 00 00 00 00 00 00 00 
D5 : 00 00 00 00 00 00 00 00
Coding
C0 : 00 00 00 00 00 00 00 00
C1 : 00 00 00 00 00 00 00 00
C2 : 0f 05 89 46 fb 75 5d c5
C3 : 0d 37 03 f0 80 cd c7 69
C5 - 4f e9 37 1b 88 4f c0 d7
D6 : 00 00 00 00 00 00 00 00 C6 : d2 af 66 51 82 ba e1 10
State of the system after decoding:
Data Coding
D0 : 6f c1 a7 58 a0 b4 17 74 C0 : 49 20 ea e8 18 d3 69 9a
D1 : 82 13 7f c0 9f 3f db a4 C1 : 31 d1 63 ef 0b 1d 6c 0e
D2 : b5 90 6d d0 92 ea ac 98 C2 : 0f 05 89 46 fb 75 5d c5
D3 : 44 6a 2b 39 ab da 31 6a C3 : 0d 37 03 f0 80 cd c7 69
D4 : 72 63 74 64 2b 84 a4 5a C4 : 63 43 e9 cc 2a ae 18 5c
D5 : 48 af 72 7d 98 55 86 63 C5 : 4f e9 37 1b 88 4f c0 d7
D6 : 6f c4 72 80 ad b9 la 81 C6 : d2 af 66 51 82 ba e1 10
UNIX>
```

This demonstrates usage of jerasure_matrix_encode(), jerasure_matrix_decode(), jerasure_print_matrix() and reed_sol_vandermonde_coding_matrix().

- reed_sol_02.c: This takes three parameters: k, m and w. It creates and prints three matrices in $G F\left(2^{w}\right)$:

1. $\mathrm{A}(k+m) \times k$ extended Vandermonde matrix.
2. The $(k+m) \times k$ distribution matrix created by converting the extended Vandermonde matrix into one where the first k rows are an identity matrix. Then row k is converted so that it is all ones, and the first column is also converted so that it is all ones.
3. The $m \times k$ coding matrix, which is last m rows of the above matrix. This is the matrix which is passed to the encoding/decoding procedures of jerasure.c. Note that since the first row of this matrix is all ones, you may set int row_k_ones of the decoding procedures to one.

Note also that w may have any value from 1 to 32.
Example:

```
UNIX> reed_sol_02 6 4 11
<HTML><TITLE>reed_sol_02 6 4 11</title>
<h3>reed_sol_02 6 4 11</h3>
<pre>
Extended Vandermonde Matrix:
\begin{tabular}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 & 16 & 32 \\
1 & 3 & 5 & 15 & 17 & 51 \\
1 & 4 & 16 & 64 & 256 & 1024 \\
1 & 5 & 17 & 85 & 257 & 1285 \\
1 & 6 & 20 & 120 & 272 & 1632 \\
1 & 7 & 21 & 107 & 273 & 1911 \\
1 & 8 & 64 & 512 & 10 & 80 \\
0 & 0 & 0 & 0 & 0 & 1
\end{tabular}
Vandermonde Generator Matrix ( \(\mathrm{G}^{\wedge} \mathrm{T}\) ):
\begin{tabular}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1879 & 1231 & 1283 & 682 & 1538 \\
1 & 1366 & 1636 & 1480 & 683 & 934 \\
1 & 1023 & 2045 & 1027 & 2044 & 1026
\end{tabular}
Vandermonde Coding Matrix:
\begin{tabular}{rrrrrr}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1879 & 1231 & 1283 & 682 & 1538 \\
1 & 1366 & 1636 & 1480 & 683 & 934 \\
1 & 1023 & 2045 & 1027 & 2044 & 1026
\end{tabular}
UNIX>
```

This demonstrates usage of reed_sol_extended_vandermonde_matrix(), reed_sol_big_vandermonde_coding_matrix(), reed_sol_vandermonde_coding_matrix() and jerasure_print_matrix().

- reed_sol_03.c: This takes three parameters: k, w and seed. It performs RAID-6 coding using Anvin's optimization [Anv07] in $G F\left(2^{w}\right)$, where w must be 8,16 or 32. It then decodes using jerasure_matrix_decode().
Example:

```
UNIX> reed_sol_03 9 8 100
<HTML><TITLE>reed_sol_03 9 8 100</title>
<h3>reed_sol_03 9 8 100</h3>
<pre>
Last 2 rows of the Generator Matrix:
```

1	1	1	1	1	1	1	1	1
1	2	4	8	16	32	64	128	29

Encoding Complete:

```
Data Coding
D0 : 8b 03 14 e7 85 ee 42 c5 C0 : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea b1 a7 77 C1 : 6e 3e bf 62 de b6 9e 0c
D2 : 44 24 26 69 c3 47 b9 49
D3 : 16 5b 8e 56 5d b3 6d 0d
D4 : b2 45 30 84 25 51 42 73
D5 : 48 ff 19 2d ba 26 c1 37
D6 : 3c 88 be 06 68 25 d9 71
D7 : f5 dd 8d e7 fa b6 51 12
D8 : 6c 5c 1b ba b4 ba 52 5d
Erased 2 random devices:
Data Coding
D0 : 8b 03 14 e7 85 ee 42 c5 C0 : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea b1 a7 77 C1 : 6e 3e bf 62 de b6 9e 0c
D2 : 44 24 26 69 c3 47 b9 49
D3 : 16 5b 8e 56 5d b3 6d 0d
D4 : b2 45 30 84 25 51 42 73
D5 : 00 00 00 00 00 00 00 00
D6 : 3c 88 be 06 68 25 d9 71
D7 : 00 00 00 00 00 00 00 00
D8 : 6c 5c 1b ba b4 ba 52 5d
State of the system after decoding:
Data
D0 : 8b 03 14 e7 85 ee 42 c5
D1 : 7d 58 3a 05 ea b1 a7 77
D2 : 44 24 26 69 c3 47 b9 49
D3 : 16 5b 8e 56 5d b3 6d 0d
D4 : b2 45 30 84 25 51 42 73
D5 : 48 ff 19 2d ba 26 c1 37
D6 : 3c 88 be 06 68 25 d9 71
D7 : f5 dd 8d e7 fa b6 51 12
D8 : 6c 5c 1b ba b4 ba 52 5d
UNIX>
```

This demonstrates usage of reed_sol_r6_encode(), reed_sol_r6_coding_matrix(), jerasure_matrix_decode() and jerasure_print_matrix().

- reed_sol_04.c: This simply demonstrates doing fast multiplication by two in $G F\left(2^{w}\right)$ for $w \in\{8,16,32\}$. It has two parameters : w and seed.

```
UNIX> reed_sol_04 16 100
<HTML><TITLE>reed_sol_04 16 100</title>
<h3>reed_sol_04 16 100</h3>
<pre>
Short 0: 907*2 = 1814
Short 1: 59156 *2 = 56867
Short 2: 61061 *2 = 52481
Short 3: 50498 *2 = 39567
Short 4: 22653*2 = 45306
Short 5: 1338*2 = 2676
Short 6: 45546 *2 = 29663
```

```
Short 7: 30631 *2 = 61262
UNIX>
```

This demonstrates usage of reed_sol_galois_w08_region_multby_2(), reed_sol_galois_w16_region_multby_2() and reed_sol_galois_w32_region_multby_2().

9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines

The files cauchy.h and cauchy.c implement procedures that are specific to Cauchy Reed-Solomon coding. See [BKK ${ }^{+} 95$, PX06] for detailed descriptions of this kind of coding. The procedures in jerasure.h/jerasure.c do the coding and decoding. The procedures here simply create coding matrices. We don't use the Cauchy matrices described in [PX06], because there is a simple heuristic that creates better matrices:

- Construct the usual Cauchy matrix M such that $M[i, j]=\frac{1}{i \oplus(m+j)}$, where division is over $G F\left(2^{w}\right), \oplus$ is XOR and the addition is regular integer addition.
- For each column j, divide each element (in $G F\left(2^{w}\right)$) by $M[0, j]$. This has the effect of turning each element in row 0 to one.
- Next, for each row $i>0$ of the matrix, do the following:
- Count the number of ones in the bit representation of the row.
- Count the number of ones in the bit representation of the row divided by element $M[i, j]$ for each j.
- Whichever value of j gives the minimal number of ones, if it improves the number of ones in the original row, divide row i by $M[i, j]$.

While this does not guarantee an optimal number of ones, it typically generates a good matrix. For example, suppose $k=m=w=3$. The matrix M is as follows:
$\left|\begin{array}{lll}6 & 7 & 2 \\ 5 & 2 & 7 \\ 1 & 3 & 4\end{array}\right|$

First, we divide column 0 by 6 , column 1 by 7 and column 2 by 2 , to yield:
$\left|\begin{array}{lll}1 & 1 & 1 \\ 4 & 3 & 6 \\ 3 & 7 & 2\end{array}\right|$

Now, we concentrate on row 1. Its bitmatrix representation has $5+7+7=19$ ones. If we divide it by 4 , the bitmatrix has $3+4+5=12$ ones. If we divide it by 3 , the bitmatrix has $4+3+4=11$ ones. If we divide it by 6 , the bitmatrix has $6+7+3=16$ ones. So, we replace row 1 with row 1 divided by 3 .

We do the same with row 2 and find that it will have the minimal number of ones when it is divided by three. The final matrix is:

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
5 & 1 & 2 \\
1 & 4 & 7
\end{array}\right|
$$

This matrix has 34 ones, a distinct improvement over the original matrix that has 46 ones. The best matrix in [PX06] has 39 ones. This is because the authors simply find the best X and Y, and do not modify the matrix after creating it.

9.1 The Procedures in cauchy.c

The procedures are:

- int *cauchy_original_coding_matrix(k, m, w): This allocates and returns the originally defined Cauchy matrix from $\left[\mathrm{BKK}^{+} 95\right]$. This is the same matrix as defined above: $M[i, j]=\frac{1}{i \oplus(m+j)}$.
- int *cauchy_xy_coding_matrix(k, m, w, int *X, int *Y): This allows the user to specify sets X and Y to define the matrix. Set X has m elements of $G F\left(2^{w}\right)$ and set Y has k elements. Neither set may have duplicate elements and $X \cap Y=\emptyset$. The procedure does not double-check X and Y - it assumes that they conform to these restrictions.
- void cauchy_improve_coding_matrix(k, m, w, matrix): This improves a matrix using the heuristic above, first dividing each column by its element in row 0 , then improving the rest of the rows.
- int *cauchy_good_general_coding_matrix(): This allocates and returns a good matrix. When $m=2, w \leq 11$ and $k \leq 1023$, it will return the optimal RAID-6 matrix. Otherwise, it generates a good matrix by calling cauchy_original_coding_matrix() and then cauchy_improve_coding_matrix(). If you need to generate RAID6 matrices that are beyond the above parameters, see Section 9.3 below.
- int cauchy_n_ones(int \mathbf{n}, \mathbf{w}): This returns the number of ones in the bit-matrix representation of the number n in $G F\left(2^{w}\right)$. It is much more efficient than generating the bit-matrix and counting ones.

9.2 Example Programs to Demonstrate Use

There are four example programs to demonstrate the use of the procedures in cauchy.h/cauchy.c.

- cauchy_01.c: This takes two parameters: n and w. It calls cauchy_n_ones() to determine the number of ones in the bit-matrix representation of n in $G F\left(2^{w}\right)$. Then it converts n to a bit-matrix, prints it and confirms the number of ones:

```
<HTML><title>cauchy_01 5 1</title>
<HTML><h3>cauchy_01 5 1</h3>
<pre>
Converted the value 1 (0x1) to the following bitmatrix:
10000
01000
00100
00010
00001
# Ones: 5
UNIX> cauchy_01 31 5
<HTML><title>cauchy_01 5 31</title>
<HTML><h3>cauchy_01 5 31</h3>
<pre>
Converted the value 31 (0x1f) to the following bitmatrix:
11110
11111
10001
11000
```

```
11100
# Ones: 16
UNIX>
```

This demonstrates usage of cauchy_n_ones(), jerasure_matrix_to_bitmatrix() and jerasure_print_bitmatrix().

- cauchy_02.c: This takes four parameters: k, m, w and seed. (In this and the following examples, packetsize is sizeof(long).) It calls cauchy_original_coding_matrix() to create an Cauchy matrix, converts it to a bitmatrix then encodes it twice. The first time is with jerasure_bitmatrix_encode(), and the second is with jerasure_schedule_encode(), which needs fewer XOR's. It also decodes twice - once with jerasure_bitmatrix_decode(), and once with jerasure_schedule_decode_lazy(), which requires fewer XOR's. Example output of the following command is in http://web.eecs.utk.edu/~plank/plank/jerasure/c02_3_3_3_100.html.

```
UNIX> cauchy_02 3 3 3 100
```

This demonstrates usage of cauchy_original_coding_matrix(), cauchy_n_ones(), jerasure_smart_bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_print_matrix() and jerasure_get_stats().

- cauchy_03.c: This is identical to cauchy_02.c, except that it creates the matrix with cauchy_xy_coding_matrix(), and improves it with cauchy_improve_coding_matrix(). The initial matrix, before improvement, is idential to the on created with cauchy_original_coding_matrix() in cauchy_02.c. Example output of the following command is in http://web.eecs.utk.edu/~plank/plank/jerasure/c03_3_3_3_100.html.

UNIX> cauchy_03 $3 \quad 3 \quad 3100$
This demonstrates usage of cauchy_xy_coding_matrix(), cauchy_improve_coding_matrix(), cauchy_n_ones(), jerasure_smart_bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_print_matrix() and jerasure_get_stats().

- cauchy_04.c: Finally, this is identical to the previous two, except it calls cauchy_good_general_coding_matrix(). Note, when $m=2, w \leq 11$ and $k \leq 1023$, these are optimal Cauchy encoding matrices. That's not to say that they are optimal RAID-6 matrices (RDP encoding [CEG ${ }^{+} 04$], and Liberation encoding [Pla08] achieve this), but they are the best Cauchy matrices. Example output of the following command is in http: //web.eecs.utk.edu/~plank/plank/jerasure/c04_3_3_3_100.html.

UNIX> cauchy_04 $3 \begin{array}{lllll}3 & 3 & 100\end{array}$
This demonstrates usage of cauchy_original_coding_matrix(), cauchy_n_ones(), jerasure_smart_bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_print_matrix() and jerasure_get_stats().

9.3 Extending the Parameter Space for Optimal Cauchy RAID-6 Matrices

It is easy to prove that as long as $k<2^{w}$, then any matrix with all ones in row 0 and distinct non-zero elements in row 1 is a valid MDS RAID-6 matrix. Therefore, the best RAID-6 matrix for a given value of w is one whose k elements in row 1 are the k elements with the smallest number of ones in their bit-matrices. Cauchy.c stores these elements in global variables for $k \leq 1023$ and $w \leq 11$. The file cauchy_best_r6.c is identical to cauchy.c except that it includes these values for $w \leq 32$. You will likely get compilation warnings when you use this file, but in my tests, all runs fine. The reason that these values are not in cauchy.c is simply to keep the object files small.

10 Part 5 of the Library: Minimal Density RAID-6 Coding

Minimal Density RAID-6 codes are MDS codes based on binary matrices which satisfy a lower-bound on the number of non-zero entries. Unlike Cauchy coding, the bit-matrix elements do not correspond to elements in $G F\left(2^{w}\right)$. Instead, the bit-matrix itself has the proper MDS property. Minimal Density RAID-6 codes perform faster than Reed-Solomon and Cauchy Reed-Solomon codes for the same parameters. Liberation coding, Liber8tion coding, and Blaum-Roth coding are three examples of this kind of coding that are supported in jerasure.

With each of these codes, m must be equal to two and k must be less than or equal to w. The value of w has restrictions based on the code [PBV11]:

- With Liberation coding, w must be a prime number.
- With Blaum-Roth coding, $w+1$ must be a prime number.
- With Liber8tion coding, w must equal 8.

The files liberation.h and liberation.c implement the following procedures:

- int *liberation_coding_bitmatrix(k, w): This allocates and returns the bit-matrix for liberation coding. Although w must be a prime number greater than 2 , this is not enforced by the procedure. If you give it a non-prime w, you will get a non-MDS coding matrix.
- int *liber8tion_coding_bitmatrix(int k): This allocates and returns the bit-matrix for liber8tion coding. There is no w parameter because w must equal 8 .
- int *blaum_roth_coding_bitmatrix(int \mathbf{k}, int \mathbf{w}): This allocates and returns the bit-matrix for Blaum Roth coding. As above, although $w+1$ must be a prime number, this is not enforced.

10.1 Example Program to Demonstrate Use

liberation_01.c: This takes three parameters: k, w, and seed. w should be a prime number greater than two and k must be less than or equal to w. As in other examples, packetsize is sizeof(long). It sets up a Liberation bit-matrix and uses it for encoding and decoding. It encodes by converting the bit-matrix to a dumb schedule. The dumb schedule is used because that schedule cannot be improved upon. For decoding, smart scheduling is used as it gives a big savings over dumb scheduling. Example output of the following command is in http://web.eecs.utk.edu/~plank/plank/ jerasure/101_7_7_100.html.

UNIX> liberation_01 77100
This demonstrates usage of liberation_coding_bitmatrix(), jerasure_dumb_bitmatrix_to_schedule(), jerasure_schedule_encode(), jerasure_schedule_decode_lazy(), jerasure_print_bitmatrix() and jerasure_get_stats().

11 Example Encoder and Decoder

- encoder.c: This program is used to encode a file using any of the available methods in jerasure. It takes seven parameters:
- inputfile or negative number S : either the file to be encoded or a negative number S indicating that a random file of size $-S$ should be used rather than an existing file
- k : number of data files
- m : number of coding files
- coding technique: must be one of the following:
* reed_sol_van: calls reed_sol_vandermonde_coding_matrix() and jerasure_matrix_encode()
* reed_sol_r6_op: calls reed_sol_r6_encode()
* cauchy_orig: calls cauchy_original_coding_matrix(), jerasure_matrix_to_bitmatrix, jerasure_smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
* cauchy_good: calls cauchy_good_general_coding_matrix(), jerasure_matrix_to_bitmatrix, jerasure_smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
* liberation: calls liberation_coding_bitmatrix, jerasure_smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
* blaum_roth: calls blaum_roth_coding_bitmatrix, jerasure_smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
* liber8tion: calls liber8tion_coding_bitmatrix, jerasure_smart_bitmatrix_to_schedule, and jerasure_schedule_encode()
- w: word size
- packetsize: can be set to 0 if not required by the selected coding method
- buffersize: approximate size of data (in bytes) to be read in at a time; will be adjusted to obtain a proper multiple and can be set to 0 if desired

This program reads in inputfile (or creates random data), breaks the file into k blocks, and encodes the file into m blocks. It also creates a metadata file to be used for decoding purposes. It writes all of these into a directory named Coding. The output of this program is the rate at which the above functions run and the total rate of running of the program, both given in $\mathrm{MB} / \mathrm{sec}$.

```
UNIX> ls -l Movie.wmv
-rwxr-xr-x 1 plank plank 55211097 Aug 14 10:52 Movie.wmv
UNIX> encoder Movie.wmv 6 2 liberation 7 1024 500000
Encoding (MB/sec): 1405.3442614500
En_Total (MB/sec): 5.8234765527
UNIX> ls -l Coding
total 143816
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k2.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> echo "" | awk '{ print 9203712*6 }'
55222272
UNIX>
```

In the above example a 52.7 MB movie file is broken into six data and two coding blocks using Liberation codes with $w=7$ and packetsize of 1 K . A buffer of 500000 bytes is specified but encoder modifies the buffer size so that it is a multiple of $w *$ packetsize $(7 * 1024)$.

The new directory, Coding, contains the six files Movie_k1.wmv through Movie_k6.wmv (which are parts of the original file) plus the two encoded files Movie_m1.wmv and Movie_m2.wmv. Note that the file sizes are multiples of 7 and 1024 as well - the original file was padded with zeros so that it would encode properly. The metadata file, Movie_meta.txt contains all information relevant to decoder.

- decoder.c: This program is used in conjunction with encoder to decode any files remaining after erasures and reconstruct the original file. The only parameter for decoder is inputfile, the original file that was encoded. This file does not have to exist; the file name is needed only to find files created by encoder, which should be in the Coding directory.
After some number of erasures, the program locates the surviving files from encoder and recreates the original file if at least k of the files still exist. The rate of decoding and the total rate of running the program are given as output.
Continuing the previous example, suppose that Movie_k2.wmv and Movie_m1.wmv are erased.

```
UNIX> rm Coding/Movie_k1.wmv Coding/Movie_k2.wmv
UNIX> mv Movie.wmv Old-Movie.wmv
UNIX> decoder Movie.wmv
Decoding (MB/sec): 1167.8230894030
De_Total (MB/sec): 16.0071713224
UNIX> ls -l Coding
total 215704
-rw-r--r-- 1 plank plank 55211097 Aug 14 11:02 Movie_decoded.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m1.wmv
-rw-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-rw-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> diff Coding/Movie_decoded.wmv Old-Movie.wmv
UNIX>
```

This reads in all of the remaining files and creates Movie_decoded.wmv which, as shown by the diff command, is identical to the original Movie.wmv. Note that decoder does not recreate the lost data files - just the original.

11.1 Judicious Selection of Buffer and Packet Sizes

In our tests, the buffer and packet sizes have as much impact on performance as the code used. This has been demonstrated multiple times by multiple authors (e.g. [PLS ${ }^{+} 09$, PGM13]). The following timings use the Liberation code to encode 256 MB of randomly created data with $k=6$ and $w=2$. These were taken in 2014 on a MacBook Pro, and show how the packet and buffer sizes can impact performance.

```
UNIX> encoder -268435456 6 2 liberation 7 1024 50000000
Encoding (MB/sec): 1593.9637842733
En_Total (MB/sec): 672.1876668353
UNIX> encoder -268435456 6 2 liberation 7 1024 5000000
Encoding (MB/sec): 2490.9393470499
En_Total (MB/sec): 1383.3866387346
UNIX> encoder -268435456 6 2 liberation 7 10240 5000000
Encoding (MB/sec): 2824.2836957036
```

```
En_Total (MB/sec): 1215.1816805228
UNIX> encoder -268435456 6 2 liberation 7 102400 5000000
Encoding (MB/sec): 1969.8973976058
En_Total (MB/sec): 517.6967197425
UNIX>
```

When using these routines, one should pay attention to packet and buffer sizes.

12 Changing the Underlying Galois Field

The two programs reed_sol_test_gf and reed_sol_time_gf allow you to change the underlying Galois Field from the command line. We focus first reed_sol_test_gf. It takes at least five command line arguments. The first four are k, m, w and seed. Following that is a specification of the Galois Field, which uses the procedure create_gf_from_argv() from GF-Complete. If you give it a single dash, it chooses the default. The program then creates a generator matrix for Reed-Solomon coding, encodes and decodes, and makes sure that decoding was successful.

Examples: First, we use the default for $w=8$, and then we change it so that it uses a multiplication table, rather than the SSE technique from [PGM13], which is the default:

```
UNIX> reed_sol_test_gf 7 4 8 100 -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -</TITLE>
<h3>reed_sol_test_gf 7 4 8 100 -</h3>
<pre>
Last m rows of the generator matrix (G^T):
\begin{tabular}{rrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 199 & 210 & 240 & 105 & 121 & 248 \\
1 & 70 & 91 & 245 & 56 & 142 & 167 \\
1 & 187 & 104 & 210 & 211 & 105 & 186
\end{tabular}
Encoding and decoding were both successful.
UNIX> reed_sol_test_gf 7 4 8 100 -m TABLE -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -m TABLE -</TITLE>
<h3>reed_sol_test_gf 7 4 8 100 -m TABLE -</h3>
<pre>
Last m rows of the generator matrix (G^T):
```

1	1	1	1	1	1	1
1	199	210	240	105	121	248
1	70	91	245	56	142	167
1	187	104	210	211	105	186

Encoding and decoding were both successful. UNIX>

In the next example, we change the primitive polynomial to a bad value - as such, decoding doesn't work:

```
UNIX> reed_sol_test_gf 7 4 8 100 -m SHIFT -p 0x1 -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -m SHIFT -p 0x1 -</TITLE>
<h3>reed_sol_test_gf 7 4 8 100 -m SHIFT -p 0x1 -</h3>
<pre>
Last m rows of the generator matrix (G^T):
```



```
    0
Decoding failed for 0!
UNIX>
```

The program reed_sol_time_gf also takes the number of iterations and a buffer size, and times the performance of Reed-Solomon coding. Below, we show how the default implementation is much faster than using tables for $w=8$:

```
UNIX> reed_sol_time_gf 7 4 8 100 1000 102400 -
<HTML><TITLE>reed_sol_time_gf 7 4 8 100 1000 102400 -</TITLE>
<h3>reed_sol_time_gf 7 4 8 100 1000 102400 -</h3>
<pre>
Last m rows of the generator matrix (G^T):
    1
    1 199 210 240 105 121 248
    1
    1 187 104 210 211 105 186
Encode throughput for 1000 iterations: 2006.88 MB/s (0.34 sec)
Decode throughput for 1000 iterations: 980.71 MB/s (0.70 sec)
UNIX> reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -
<HTML><TITLE>reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -</TITLE>
<h3>reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -</h3>
<pre>
Last m rows of the generator matrix (G^T):
    1
    1 199 210 240 105 121 248
    1 700 91 245 56 142 167
    1 187 104 210 211 105 186
Encode throughput for 1000 iterations: 249.56 MB/s (2.74 sec)
Decode throughput for 1000 iterations: 118.02 MB/s (5.79 sec)
UNIX>
```

Finally, the shell script time_all_gfs_argv_init.sh uses the command gf_methods from GF-Complete to list a variety of methods for specifying the underlying Galois Field and times them all. As you can see, for $w=16$ and $w=32$, there are some faster methods than the defaults. You should read the GF-Complete manual to learn about them, because they have some caveats. (Again, these timings are all on my MacBook Pro from 2014).

```
UNIX> sh time_all_gfs_argv_init.sh
Testing 12 3 8 1370 128 65536 -
Encode throughput for 128 iterations: 2406.96 MB/s (0.04 sec)
Decode throughput for 128 iterations: 1221.93 MB/s (0.08 sec)
Testing 12 3 8 1370 128 65536 -m TABLE -
Encode throughput for 128 iterations: 327.08 MB/s (0.29 sec)
Decode throughput for 128 iterations: 162.64 MB/s (0.59 sec)
Testing 12 3 8 1370 128 65536 -m TABLE -r DOUBLE -
Encode throughput for 128 iterations: 416.53 MB/s (0.23 sec)
Decode throughput for 128 iterations: 201.12 MB/s (0.48 sec)
Testing 12 3 8 1370 128 65536 -m LOG -
Encode throughput for 128 iterations: 279.85 MB/s (0.34 sec)
Decode throughput for 128 iterations: 135.50 MB/s (0.71 sec)
Testing 12 3 8 1370 128 65536 -m SPLIT 8 4 -
```


12 CHANGING THE UNDERLYING GALOIS FIELD

```
Encode throughput for 128 iterations: 2547.83 MB/s (0.04 sec)
Decode throughput for 128 iterations: 1266.00 MB/s (0.08 sec)
Testing 12 3 8 1370 128 65536 -m COMPOSITE 2 - -
Encode throughput for 128 iterations: 91.27 MB/s (1.05 sec)
Decode throughput for 128 iterations: 45.79 MB/s (2.10 sec)
Testing 12 3 8 1370 128 65536 -m COMPOSITE 2 - -r ALTMAP -
Encode throughput for 128 iterations: 2642.65 MB/s (0.04 sec)
Decode throughput for 128 iterations: 1346.82 MB/s (0.07 sec)
Testing 12 3 16 1370 128 65536 -
Encode throughput for 128 iterations: 1910.75 MB/s (0.05 sec)
Decode throughput for 128 iterations: 947.93 MB/s (0.10 sec)
Testing 12 3 16 1370 128 65536 -m TABLE -
Encode throughput for 128 iterations: 19.48 MB/s (4.93 sec)
Decode throughput for 128 iterations: 9.32 MB/s (10.30 sec)
Testing 12 3 16 1370 128 65536 -m LOG -
Encode throughput for 128 iterations: 272.43 MB/s (0.35 sec)
Decode throughput for 128 iterations: 132.38 MB/s (0.73 sec)
Testing 12 3 16 1370 128 65536 -m SPLIT 16 4 -
Encode throughput for 128 iterations: 1758.13 MB/s (0.05 sec)
Decode throughput for 128 iterations: 890.31 MB/s (0.11 sec)
Testing 12 3 16 1370 128 65536 -m SPLIT 16 4 -r ALTMAP -
Encode throughput for 128 iterations: 2259.65 MB/s (0.04 sec)
Decode throughput for 128 iterations: 1147.83 MB/s (0.08 sec)
Testing 12 3 16 1370 128 65536 -m SPLIT 16 8 -
Encode throughput for 128 iterations: 647.10 MB/s (0.15 sec)
Decode throughput for 128 iterations: 320.29 MB/s (0.30 sec)
Testing 12 3 16 1370 128 65536 -m SPLIT 8 8 -
Encode throughput for 128 iterations: 646.79 MB/s (0.15 sec)
Decode throughput for 128 iterations: 316.62 MB/s (0.30 sec)
Testing 12 3 16 1370 128 65536 -m COMPOSITE 2 - -
Encode throughput for 128 iterations: 162.01 MB/s (0.59 sec)
Decode throughput for 128 iterations: 79.45 MB/s (1.21 sec)
Testing 12 3 16 1370 128 65536 -m COMPOSITE 2 - -r ALTMAP -
Encode throughput for 128 iterations: 2555.99 MB/s (0.04 sec)
Decode throughput for 128 iterations: 1266.64 MB/s (0.08 sec)
Testing 12 3 32 1370 128 65536 -
Encode throughput for 128 iterations: 1230.37 MB/s (0.08 sec)
Decode throughput for 128 iterations: 592.87 MB/s (0.16 sec)
Testing 12 3 32 1370 128 65536 -m GROUP 4 8 -
Encode throughput for 128 iterations: 92.27 MB/s (1.04 sec)
Decode throughput for 128 iterations: 44.65 MB/s (2.15 sec)
Testing 12 3 32 1370 128 65536 -m SPLIT 32 4 -
Encode throughput for 128 iterations: 1207.73 MB/s (0.08 sec)
Decode throughput for 128 iterations: 595.01 MB/s (0.16 sec)
Testing 12 3 32 1370 128 65536 -m SPLIT 32 4 -r ALTMAP -
Encode throughput for 128 iterations: 1641.69 MB/s (0.06 sec)
Decode throughput for 128 iterations: 791.95 MB/s (0.12 sec)
Testing 12 3 32 1370 128 65536 -m SPLIT 32 8 -
Encode throughput for 128 iterations: 424.79 MB/s (0.23 sec)
Decode throughput for 128 iterations: 202.66 MB/s (0.47 sec)
Testing 12 3 32 1370 128 65536 -m SPLIT 8 8 -
Encode throughput for 128 iterations: 423.76 MB/s (0.23 sec)
Decode throughput for 128 iterations: 202.69 MB/s (0.47 sec)
Testing 12 3 32 1370 128 65536 -m COMPOSITE 2 - -
Encode throughput for 128 iterations: 125.19 MB/s (0.77 sec)
Decode throughput for 128 iterations: 60.84 MB/s (1.58 sec)
Testing 12 3 32 1370 128 65536 -m COMPOSITE 2 - -r ALTMAP -
```

Encode throughput for 128 iterations: $1793.63 \mathrm{MB} / \mathrm{s}(0.05 \mathrm{sec})$
Decode throughput for 128 iterations: $893.84 \mathrm{MB} / \mathrm{s}(0.11 \mathrm{sec})$
Passed all tests!
UNIX>

References

[Anv07] H. P. Anvin. The mathematics of RAID-6. http://kernel.org/pub/linux/kernel/people/hpa/ raid6.pdf, 2007.
[BBBM95] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk failures in RAID architectures. IEEE Transactions on Computing, 44(2):192- 202, February 1995.
[BBV96] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with independent parity symbols. IEEE Transactions on Information Theory, 42(2):529- 542, February 1996.
$\left[\mathrm{BKK}^{+} 95\right]$ J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuckerman. An XOR-based erasureresilient coding scheme. Technical Report TR-95-048, International Computer Science Institute, August 1995.
[Bla06] M. Blaum. A family of MDS array codes with minimal number of encoding operations. In IEEE International Symposium on Information Theory, Seattle, September 2006.
[BR99] M. Blaum and R. M. Roth. On lowest density MDS codes. IEEE Transactions on Information Theory, 45(1):46-59, January 1999.
$\left[\mathrm{CEG}^{+} 04\right]$ P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row diagonal parity for double disk failure correction. In FAST-2004: 3rd Usenix Conference on File and Storage Technologies, San Francisco, CA, March 2004.
[HDRT05] J. L. Hafner, V. Deenadhayalan, K. K. Rao, and A. Tomlin. Matrix methods for lost data reconstruction in erasure codes. In FAST-2005: 4th Usenix Conference on File and Storage Technologies, pages 183-196, San Francisco, December 2005.
[HLC07] C. Huang, J. Li, and M. Chen. On optimizing XOR-based codes for fault-tolerant storage applications. In ITW'07, Information Theory Workshop, pages 218-223, Tahoe City, CA, September 2007. IEEE.
[HX05] C. Huang and L. Xu. STAR: An efficient coding scheme for correcting triple storage node failures. In FAST-2005: 4th Usenix Conference on File and Storage Technologies, pages 197-210, San Francisco, December 2005.
[PBV11] J. S. Plank, A. L. Buchsbaum, and B. T. Vander Zanden. Minimum density RAID-6 codes. ACM Transactions on Storage, 6(4), May 2011.
[PD05] J. S. Plank and Y. Ding. Note: Correction to the 1997 tutorial on Reed-Solomon coding. Software Practice \& Experience, 35(2):189-194, February 2005.
[PG14] J. S. Plank and K. M. Greenan. Jerasure: A library in C facilitating erasure coding for storage applications - version 2.0. Technical Report UT-EECS-14-721, University of Tennessee, January 2014.
[PGM13] J. S. Plank, K. M. Greenan, and E. L. Miller. Screaming fast Galois Field arithmetic using Intel SIMD instructions. In FAST-2013: 11th Usenix Conference on File and Storage Technologies, San Jose, February 2013.
[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software Practice \& Experience, 27(9):995-1012, September 1997.
[Pla07a] J. S. Plank. Fast Galois Field arithmetic library in C/C++. Technical Report CS-07-593, University of Tennessee, April 2007.
[Pla07b] J. S. Plank. Jerasure: A library in C/C++ facilitating erasure coding for storage applications. Technical Report CS-07-603, University of Tennessee, September 2007.
[Pla08] J. S. Plank. The RAID-6 Liberation codes. In FAST-2008: 6th Usenix Conference on File and Storage Technologies, pages 97-110, San Jose, February 2008.
[Pla09] J. S. Plank. The RAID-6 Liber8Tion code. International Journal of High Performance Computing Applications, 23(3):242-251, 2009.
[Pla10] J. S. Plank. Uber-CSHR and X-Sets: C++ programs for optimizing matrix-based erasure codes for faulttolerant storage systems. Technical Report CS-10-665, University of Tennessee, December 2010.
[PLS $\left.{ }^{+} 09\right]$ J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O'Hearn. A performance evaluation and examination of open-source erasure coding libraries for storage. In FAST-2009: 7th Usenix Conference on File and Storage Technologies, pages 253-265, February 2009.
[Pre89] F. P. Preparata. Holographic dispersal and recovery of information. IEEE Transactions on Information Theory, 35(5):1123-1124, September 1989.
[PSR12] J. S. Plank, C. D. Schuman, and B. D. Robison. Heuristics for optimizing matrix-based erasure codes for fault-tolerant storage systems. In DSN-2012: The International Conference on Dependable Systems and Networks, Boston, MA, June 2012. IEEE.
[PSS08] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: A library in C/C++ facilitating erasure coding for storage applications - Version 1.2. Technical Report CS-08-627, University of Tennessee, August 2008.
[PX06] J. S. Plank and L. Xu. Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage applications. In NCA-06: 5th IEEE International Symposium on Network Computing Applications, Cambridge, MA, July 2006.
[Rab89] M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the Association for Computing Machinery, 36(2):335-348, April 1989.
[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics, 8:300-304, 1960.

[^0]: *plank@cs.utk.edu, 865-974-4397, This material is based upon work supported by the National Science Foundation under grants CNS0615221 and CNS-1034216. Kevin Greenan works at Box, Inc. in Los Altos, CA.

