struct ldt_struct *ldt;
 
                /* IRQs are off, so this synchronizes with smp_store_release */
-               ldt = lockless_dereference(current->active_mm->context.ldt);
+               ldt = READ_ONCE(current->active_mm->context.ldt);
                if (!ldt || idx >= ldt->nr_entries)
                        return 0;
 
 
 #ifdef CONFIG_MODIFY_LDT_SYSCALL
        struct ldt_struct *ldt;
 
-       /* lockless_dereference synchronizes with smp_store_release */
-       ldt = lockless_dereference(mm->context.ldt);
+       /* READ_ONCE synchronizes with smp_store_release */
+       ldt = READ_ONCE(mm->context.ldt);
 
        /*
         * Any change to mm->context.ldt is followed by an IPI to all
 
 static void install_ldt(struct mm_struct *current_mm,
                        struct ldt_struct *ldt)
 {
-       /* Synchronizes with lockless_dereference in load_mm_ldt. */
+       /* Synchronizes with READ_ONCE in load_mm_ldt. */
        smp_store_release(¤t_mm->context.ldt, ldt);
 
        /* Activate the LDT for all CPUs using current_mm. */
 
 
        pgpath = path_to_pgpath(path);
 
-       if (unlikely(lockless_dereference(m->current_pg) != pg)) {
+       if (unlikely(READ_ONCE(m->current_pg) != pg)) {
                /* Only update current_pgpath if pg changed */
                spin_lock_irqsave(&m->lock, flags);
                m->current_pgpath = pgpath;
        }
 
        /* Were we instructed to switch PG? */
-       if (lockless_dereference(m->next_pg)) {
+       if (READ_ONCE(m->next_pg)) {
                spin_lock_irqsave(&m->lock, flags);
                pg = m->next_pg;
                if (!pg) {
 
        /* Don't change PG until it has no remaining paths */
 check_current_pg:
-       pg = lockless_dereference(m->current_pg);
+       pg = READ_ONCE(m->current_pg);
        if (pg) {
                pgpath = choose_path_in_pg(m, pg, nr_bytes);
                if (!IS_ERR_OR_NULL(pgpath))
        struct request *clone;
 
        /* Do we need to select a new pgpath? */
-       pgpath = lockless_dereference(m->current_pgpath);
+       pgpath = READ_ONCE(m->current_pgpath);
        if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
                pgpath = choose_pgpath(m, nr_bytes);
 
        bool queue_io;
 
        /* Do we need to select a new pgpath? */
-       pgpath = lockless_dereference(m->current_pgpath);
+       pgpath = READ_ONCE(m->current_pgpath);
        queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
        if (!pgpath || !queue_io)
                pgpath = choose_pgpath(m, nr_bytes);
        struct pgpath *current_pgpath;
        int r;
 
-       current_pgpath = lockless_dereference(m->current_pgpath);
+       current_pgpath = READ_ONCE(m->current_pgpath);
        if (!current_pgpath)
                current_pgpath = choose_pgpath(m, 0);
 
        }
 
        if (r == -ENOTCONN) {
-               if (!lockless_dereference(m->current_pg)) {
+               if (!READ_ONCE(m->current_pg)) {
                        /* Path status changed, redo selection */
                        (void) choose_pgpath(m, 0);
                }
                return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
 
        /* Guess which priority_group will be used at next mapping time */
-       pg = lockless_dereference(m->current_pg);
-       next_pg = lockless_dereference(m->next_pg);
-       if (unlikely(!lockless_dereference(m->current_pgpath) && next_pg))
+       pg = READ_ONCE(m->current_pg);
+       next_pg = READ_ONCE(m->next_pg);
+       if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
                pg = next_pg;
 
        if (!pg) {
 
 {
        /*
         * Be careful about RCU walk racing with rename:
-        * use 'lockless_dereference' to fetch the name pointer.
+        * use 'READ_ONCE' to fetch the name pointer.
         *
         * NOTE! Even if a rename will mean that the length
         * was not loaded atomically, we don't care. The
         * early because the data cannot match (there can
         * be no NUL in the ct/tcount data)
         */
-       const unsigned char *cs = lockless_dereference(dentry->d_name.name);
+       const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 
        return dentry_string_cmp(cs, ct, tcount);
 }
 
 
 static inline struct dentry *ovl_upperdentry_dereference(struct ovl_inode *oi)
 {
-       return lockless_dereference(oi->__upperdentry);
+       return READ_ONCE(oi->__upperdentry);
 }
 
        if (!od->is_upper && OVL_TYPE_UPPER(ovl_path_type(dentry))) {
                struct inode *inode = file_inode(file);
 
-               realfile = lockless_dereference(od->upperfile);
+               realfile = READ_ONCE(od->upperfile);
                if (!realfile) {
                        struct path upperpath;
 
 
  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
  */
 #define list_entry_rcu(ptr, type, member) \
-       container_of(lockless_dereference(ptr), type, member)
+       container_of(READ_ONCE(ptr), type, member)
 
 /*
  * Where are list_empty_rcu() and list_first_entry_rcu()?
  * example is when items are added to the list, but never deleted.
  */
 #define list_entry_lockless(ptr, type, member) \
-       container_of((typeof(ptr))lockless_dereference(ptr), type, member)
+       container_of((typeof(ptr))READ_ONCE(ptr), type, member)
 
 /**
  * list_for_each_entry_lockless - iterate over rcu list of given type
 
 #define __rcu_dereference_check(p, c, space) \
 ({ \
        /* Dependency order vs. p above. */ \
-       typeof(*p) *________p1 = (typeof(*p) *__force)lockless_dereference(p); \
+       typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
        rcu_dereference_sparse(p, space); \
        ((typeof(*p) __force __kernel *)(________p1)); \
 #define rcu_dereference_raw(p) \
 ({ \
        /* Dependency order vs. p above. */ \
-       typeof(p) ________p1 = lockless_dereference(p); \
+       typeof(p) ________p1 = READ_ONCE(p); \
        ((typeof(*p) __force __kernel *)(________p1)); \
 })
 
 
         * indeed free this event, otherwise we need to serialize on
         * owner->perf_event_mutex.
         */
-       owner = lockless_dereference(event->owner);
+       owner = READ_ONCE(event->owner);
        if (owner) {
                /*
                 * Since delayed_put_task_struct() also drops the last
                 * Cannot change, child events are not migrated, see the
                 * comment with perf_event_ctx_lock_nested().
                 */
-               ctx = lockless_dereference(child->ctx);
+               ctx = READ_ONCE(child->ctx);
                /*
                 * Since child_mutex nests inside ctx::mutex, we must jump
                 * through hoops. We start by grabbing a reference on the ctx.
 
        u32 ret = SECCOMP_RET_ALLOW;
        /* Make sure cross-thread synced filter points somewhere sane. */
        struct seccomp_filter *f =
-                       lockless_dereference(current->seccomp.filter);
+                       READ_ONCE(current->seccomp.filter);
 
        /* Ensure unexpected behavior doesn't result in failing open. */
        if (unlikely(WARN_ON(f == NULL)))
 
         * we raced with task_work_run(), *pprev == NULL/exited.
         */
        raw_spin_lock_irqsave(&task->pi_lock, flags);
-       while ((work = lockless_dereference(*pprev))) {
+       while ((work = READ_ONCE(*pprev))) {
                if (work->func != func)
                        pprev = &work->next;
                else if (cmpxchg(pprev, work, work->next) == work)
 
         * memcg_caches issues a write barrier to match this (see
         * memcg_create_kmem_cache()).
         */
-       cachep = lockless_dereference(arr->entries[idx]);
+       cachep = READ_ONCE(arr->entries[idx]);
        rcu_read_unlock();
 
        return cachep;