--- /dev/null
+{
+"svm_123.pkl": ["smart_197_raw", "smart_183_raw", "smart_200_raw", "smart_194_raw", "smart_254_raw", "smart_252_raw", "smart_4_raw", "smart_222_raw", "smart_187_raw", "smart_184_raw"],
+"svm_105.pkl": ["smart_197_raw", "smart_4_raw", "smart_5_raw", "smart_252_raw", "smart_184_raw", "smart_223_raw", "smart_198_raw", "smart_10_raw", "smart_189_raw", "smart_222_raw"],
+"svm_82.pkl":["smart_184_raw", "smart_2_raw", "smart_187_raw", "smart_225_raw", "smart_198_raw", "smart_197_raw", "smart_4_raw", "smart_13_raw", "smart_188_raw", "smart_251_raw"],
+"svm_186.pkl":["smart_3_raw", "smart_11_raw", "smart_198_raw", "smart_250_raw", "smart_13_raw", "smart_200_raw", "smart_224_raw", "smart_187_raw", "smart_22_raw", "smart_4_raw", "smart_220_raw"],
+"svm_14.pkl":["smart_12_raw", "smart_226_raw", "smart_187_raw", "smart_196_raw", "smart_5_raw", "smart_183_raw", "smart_255_raw", "smart_250_raw", "smart_201_raw", "smart_8_raw"],
+"svm_10.pkl":["smart_251_raw", "smart_4_raw", "smart_223_raw", "smart_13_raw", "smart_255_raw", "smart_188_raw", "smart_197_raw", "smart_201_raw", "smart_250_raw", "smart_15_raw"],
+"svm_235.pkl":["smart_15_raw", "smart_255_raw", "smart_252_raw", "smart_197_raw", "smart_250_raw", "smart_254_raw", "smart_13_raw", "smart_251_raw", "smart_198_raw", "smart_189_raw", "smart_191_raw"],
+"svm_234.pkl":["smart_187_raw", "smart_183_raw", "smart_3_raw", "smart_4_raw", "smart_222_raw", "smart_184_raw", "smart_5_raw", "smart_198_raw", "smart_200_raw", "smart_8_raw", "smart_10_raw"],
+"svm_119.pkl":["smart_254_raw", "smart_8_raw", "smart_183_raw", "smart_184_raw", "smart_195_raw", "smart_252_raw", "smart_191_raw", "smart_10_raw", "smart_200_raw", "smart_197_raw"],
+"svm_227.pkl":["smart_254_raw", "smart_189_raw", "smart_225_raw", "smart_224_raw", "smart_197_raw", "smart_223_raw", "smart_4_raw", "smart_183_raw", "smart_11_raw", "smart_184_raw", "smart_13_raw"],
+"svm_18.pkl":["smart_197_raw", "smart_3_raw", "smart_220_raw", "smart_193_raw", "smart_10_raw", "smart_187_raw", "smart_188_raw", "smart_225_raw", "smart_194_raw", "smart_13_raw"],
+"svm_78.pkl":["smart_10_raw", "smart_183_raw", "smart_191_raw", "smart_13_raw", "smart_198_raw", "smart_22_raw", "smart_195_raw", "smart_12_raw", "smart_224_raw", "smart_200_raw"],
+"svm_239.pkl":["smart_3_raw", "smart_254_raw", "smart_199_raw", "smart_225_raw", "smart_187_raw", "smart_195_raw", "smart_197_raw", "smart_2_raw", "smart_193_raw", "smart_220_raw", "smart_183_raw"],
+"svm_174.pkl":["smart_183_raw", "smart_196_raw", "smart_225_raw", "smart_189_raw", "smart_4_raw", "smart_3_raw", "smart_9_raw", "smart_198_raw", "smart_15_raw", "smart_5_raw", "smart_194_raw"],
+"svm_104.pkl":["smart_12_raw", "smart_198_raw", "smart_197_raw", "smart_4_raw", "smart_240_raw", "smart_187_raw", "smart_225_raw", "smart_8_raw", "smart_3_raw", "smart_2_raw"],
+"svm_12.pkl":["smart_222_raw", "smart_251_raw", "smart_194_raw", "smart_9_raw", "smart_184_raw", "smart_191_raw", "smart_187_raw", "smart_255_raw", "smart_4_raw", "smart_11_raw"],
+"svm_97.pkl":["smart_15_raw", "smart_197_raw", "smart_190_raw", "smart_199_raw", "smart_200_raw", "smart_12_raw", "smart_191_raw", "smart_254_raw", "smart_194_raw", "smart_201_raw"],
+"svm_118.pkl":["smart_11_raw", "smart_225_raw", "smart_196_raw", "smart_197_raw", "smart_198_raw", "smart_200_raw", "smart_3_raw", "smart_10_raw", "smart_191_raw", "smart_22_raw"],
+"svm_185.pkl":["smart_191_raw", "smart_254_raw", "smart_3_raw", "smart_190_raw", "smart_15_raw", "smart_22_raw", "smart_2_raw", "smart_198_raw", "smart_13_raw", "smart_226_raw", "smart_225_raw"],
+"svm_206.pkl":["smart_183_raw", "smart_192_raw", "smart_197_raw", "smart_255_raw", "smart_187_raw", "smart_254_raw", "smart_198_raw", "smart_13_raw", "smart_226_raw", "smart_240_raw", "smart_8_raw"],
+"svm_225.pkl":["smart_224_raw", "smart_11_raw", "smart_5_raw", "smart_4_raw", "smart_225_raw", "smart_197_raw", "smart_15_raw", "smart_183_raw", "smart_193_raw", "smart_190_raw", "smart_187_raw"],
+"svm_169.pkl":["smart_252_raw", "smart_183_raw", "smart_254_raw", "smart_11_raw", "smart_193_raw", "smart_22_raw", "smart_226_raw", "smart_189_raw", "smart_225_raw", "smart_198_raw", "smart_200_raw"],
+"svm_79.pkl":["smart_184_raw", "smart_196_raw", "smart_4_raw", "smart_226_raw", "smart_199_raw", "smart_187_raw", "smart_193_raw", "smart_188_raw", "smart_12_raw", "smart_250_raw"],
+"svm_69.pkl":["smart_187_raw", "smart_9_raw", "smart_200_raw", "smart_11_raw", "smart_252_raw", "smart_189_raw", "smart_4_raw", "smart_188_raw", "smart_255_raw", "smart_201_raw"],
+"svm_201.pkl":["smart_224_raw", "smart_8_raw", "smart_250_raw", "smart_2_raw", "smart_198_raw", "smart_15_raw", "smart_193_raw", "smart_223_raw", "smart_3_raw", "smart_11_raw", "smart_191_raw"],
+"svm_114.pkl":["smart_226_raw", "smart_188_raw", "smart_2_raw", "smart_11_raw", "smart_4_raw", "smart_193_raw", "smart_184_raw", "smart_194_raw", "smart_198_raw", "smart_13_raw"],
+"svm_219.pkl":["smart_12_raw", "smart_22_raw", "smart_8_raw", "smart_191_raw", "smart_197_raw", "smart_254_raw", "smart_15_raw", "smart_193_raw", "smart_199_raw", "smart_225_raw", "smart_192_raw"],
+"svm_168.pkl":["smart_255_raw", "smart_191_raw", "smart_193_raw", "smart_220_raw", "smart_5_raw", "smart_3_raw", "smart_222_raw", "smart_223_raw", "smart_197_raw", "smart_196_raw", "smart_22_raw"],
+"svm_243.pkl":["smart_11_raw", "smart_255_raw", "smart_10_raw", "smart_189_raw", "smart_225_raw", "smart_240_raw", "smart_222_raw", "smart_197_raw", "smart_183_raw", "smart_198_raw", "smart_12_raw"],
+"svm_195.pkl":["smart_183_raw", "smart_5_raw", "smart_11_raw", "smart_197_raw", "smart_15_raw", "smart_9_raw", "smart_4_raw", "smart_220_raw", "smart_12_raw", "smart_192_raw", "smart_240_raw"],
+"svm_222.pkl":["smart_10_raw", "smart_13_raw", "smart_188_raw", "smart_15_raw", "smart_192_raw", "smart_224_raw", "smart_225_raw", "smart_187_raw", "smart_222_raw", "smart_220_raw", "smart_252_raw"],
+"svm_62.pkl":["smart_196_raw", "smart_251_raw", "smart_187_raw", "smart_224_raw", "smart_11_raw", "smart_12_raw", "smart_8_raw", "smart_199_raw", "smart_220_raw", "smart_195_raw"],
+"svm_151.pkl":["smart_187_raw", "smart_223_raw", "smart_200_raw", "smart_189_raw", "smart_251_raw", "smart_255_raw", "smart_222_raw", "smart_192_raw", "smart_12_raw", "smart_183_raw", "smart_22_raw"],
+"svm_125.pkl":["smart_9_raw", "smart_252_raw", "smart_197_raw", "smart_251_raw", "smart_11_raw", "smart_12_raw", "smart_188_raw", "smart_240_raw", "smart_10_raw", "smart_223_raw"],
+"svm_124.pkl":["smart_193_raw", "smart_187_raw", "smart_183_raw", "smart_11_raw", "smart_10_raw", "smart_8_raw", "smart_194_raw", "smart_189_raw", "smart_222_raw", "smart_191_raw"],
+"svm_67.pkl":["smart_2_raw", "smart_8_raw", "smart_225_raw", "smart_240_raw", "smart_13_raw", "smart_5_raw", "smart_187_raw", "smart_198_raw", "smart_199_raw", "smart_3_raw"],
+"svm_115.pkl":["smart_222_raw", "smart_193_raw", "smart_223_raw", "smart_195_raw", "smart_252_raw", "smart_189_raw", "smart_199_raw", "smart_187_raw", "smart_15_raw", "smart_184_raw"],
+"svm_1.pkl":["smart_201_raw", "smart_8_raw", "smart_200_raw", "smart_252_raw", "smart_251_raw", "smart_187_raw", "smart_9_raw", "smart_188_raw", "smart_15_raw", "smart_184_raw"],
+"svm_112.pkl":["smart_220_raw", "smart_197_raw", "smart_10_raw", "smart_188_raw", "smart_12_raw", "smart_4_raw", "smart_196_raw", "smart_3_raw", "smart_240_raw", "smart_225_raw"],
+"svm_138.pkl":["smart_183_raw", "smart_10_raw", "smart_191_raw", "smart_195_raw", "smart_223_raw", "smart_189_raw", "smart_187_raw", "smart_255_raw", "smart_226_raw", "smart_8_raw"],
+"svm_229.pkl":["smart_224_raw", "smart_8_raw", "smart_192_raw", "smart_220_raw", "smart_195_raw", "smart_183_raw", "smart_250_raw", "smart_187_raw", "smart_225_raw", "smart_4_raw", "smart_252_raw"],
+"svm_145.pkl":["smart_190_raw", "smart_8_raw", "smart_226_raw", "smart_184_raw", "smart_225_raw", "smart_220_raw", "smart_193_raw", "smart_183_raw", "smart_201_raw", "smart_187_raw", "smart_2_raw"],
+"svm_59.pkl":["smart_188_raw", "smart_11_raw", "smart_184_raw", "smart_2_raw", "smart_220_raw", "smart_198_raw", "smart_225_raw", "smart_240_raw", "smart_197_raw", "smart_251_raw"],
+"svm_204.pkl":["smart_15_raw", "smart_240_raw", "smart_225_raw", "smart_223_raw", "smart_252_raw", "smart_22_raw", "smart_200_raw", "smart_13_raw", "smart_220_raw", "smart_198_raw", "smart_191_raw"],
+"svm_88.pkl":["smart_198_raw", "smart_3_raw", "smart_8_raw", "smart_225_raw", "smart_251_raw", "smart_222_raw", "smart_188_raw", "smart_10_raw", "smart_240_raw", "smart_189_raw"],
+"svm_182.pkl":["smart_10_raw", "smart_190_raw", "smart_250_raw", "smart_15_raw", "smart_193_raw", "smart_22_raw", "smart_200_raw", "smart_8_raw", "smart_4_raw", "smart_187_raw", "smart_9_raw"],
+"svm_61.pkl":["smart_5_raw", "smart_12_raw", "smart_9_raw", "smart_198_raw", "smart_195_raw", "smart_252_raw", "smart_15_raw", "smart_240_raw", "smart_255_raw", "smart_224_raw"],
+"svm_50.pkl":["smart_220_raw", "smart_5_raw", "smart_194_raw", "smart_250_raw", "smart_15_raw", "smart_240_raw", "smart_8_raw", "smart_198_raw", "smart_224_raw", "smart_191_raw"],
+"svm_210.pkl":["smart_8_raw", "smart_15_raw", "smart_195_raw", "smart_224_raw", "smart_5_raw", "smart_191_raw", "smart_198_raw", "smart_225_raw", "smart_200_raw", "smart_251_raw", "smart_240_raw"],
+"svm_16.pkl":["smart_222_raw", "smart_10_raw", "smart_250_raw", "smart_189_raw", "smart_191_raw", "smart_2_raw", "smart_5_raw", "smart_193_raw", "smart_9_raw", "smart_187_raw"],
+"svm_85.pkl":["smart_252_raw", "smart_184_raw", "smart_9_raw", "smart_5_raw", "smart_254_raw", "smart_3_raw", "smart_195_raw", "smart_10_raw", "smart_12_raw", "smart_222_raw"],
+"svm_36.pkl":["smart_201_raw", "smart_251_raw", "smart_184_raw", "smart_3_raw", "smart_5_raw", "smart_183_raw", "smart_194_raw", "smart_195_raw", "smart_224_raw", "smart_2_raw"],
+"svm_33.pkl":["smart_223_raw", "smart_254_raw", "smart_225_raw", "smart_9_raw", "smart_199_raw", "smart_5_raw", "smart_189_raw", "smart_194_raw", "smart_240_raw", "smart_4_raw"],
+"svm_3.pkl":["smart_225_raw", "smart_194_raw", "smart_3_raw", "smart_189_raw", "smart_9_raw", "smart_254_raw", "smart_240_raw", "smart_5_raw", "smart_255_raw", "smart_223_raw"],
+"svm_93.pkl":["smart_8_raw", "smart_188_raw", "smart_5_raw", "smart_10_raw", "smart_222_raw", "smart_2_raw", "smart_254_raw", "smart_12_raw", "smart_193_raw", "smart_224_raw"],
+"svm_120.pkl":["smart_189_raw", "smart_224_raw", "smart_222_raw", "smart_193_raw", "smart_5_raw", "smart_201_raw", "smart_8_raw", "smart_254_raw", "smart_194_raw", "smart_22_raw"],
+"svm_128.pkl":["smart_195_raw", "smart_184_raw", "smart_251_raw", "smart_8_raw", "smart_5_raw", "smart_196_raw", "smart_10_raw", "smart_4_raw", "smart_225_raw", "smart_191_raw"],
+"svm_212.pkl":["smart_225_raw", "smart_192_raw", "smart_10_raw", "smart_12_raw", "smart_222_raw", "smart_184_raw", "smart_13_raw", "smart_226_raw", "smart_5_raw", "smart_201_raw", "smart_22_raw"],
+"svm_221.pkl":["smart_255_raw", "smart_2_raw", "smart_224_raw", "smart_192_raw", "smart_252_raw", "smart_13_raw", "smart_183_raw", "smart_193_raw", "smart_15_raw", "smart_199_raw", "smart_200_raw"],
+"svm_223.pkl":["smart_4_raw", "smart_194_raw", "smart_9_raw", "smart_255_raw", "smart_188_raw", "smart_201_raw", "smart_3_raw", "smart_226_raw", "smart_192_raw", "smart_251_raw", "smart_191_raw"],
+"svm_44.pkl":["smart_255_raw", "smart_11_raw", "smart_200_raw", "smart_3_raw", "smart_195_raw", "smart_201_raw", "smart_4_raw", "smart_5_raw", "smart_10_raw", "smart_191_raw"],
+"svm_213.pkl":["smart_22_raw", "smart_191_raw", "smart_183_raw", "smart_4_raw", "smart_194_raw", "smart_255_raw", "smart_254_raw", "smart_193_raw", "smart_11_raw", "smart_10_raw", "smart_220_raw"],
+"svm_131.pkl":["smart_22_raw", "smart_194_raw", "smart_184_raw", "smart_250_raw", "smart_10_raw", "smart_189_raw", "smart_183_raw", "smart_240_raw", "smart_12_raw", "smart_252_raw"],
+"svm_6.pkl":["smart_194_raw", "smart_250_raw", "smart_223_raw", "smart_224_raw", "smart_184_raw", "smart_191_raw", "smart_201_raw", "smart_9_raw", "smart_252_raw", "smart_3_raw"],
+"svm_161.pkl":["smart_255_raw", "smart_222_raw", "smart_226_raw", "smart_254_raw", "smart_183_raw", "smart_22_raw", "smart_12_raw", "smart_190_raw", "smart_11_raw", "smart_192_raw", "smart_251_raw"],
+"svm_72.pkl":["smart_13_raw", "smart_184_raw", "smart_223_raw", "smart_240_raw", "smart_250_raw", "smart_251_raw", "smart_201_raw", "smart_196_raw", "smart_5_raw", "smart_4_raw"],
+"svm_27.pkl":["smart_189_raw", "smart_188_raw", "smart_255_raw", "smart_251_raw", "smart_240_raw", "smart_15_raw", "smart_9_raw", "smart_191_raw", "smart_226_raw", "smart_10_raw"],
+"svm_141.pkl":["smart_9_raw", "smart_191_raw", "smart_2_raw", "smart_226_raw", "smart_13_raw", "smart_22_raw", "smart_193_raw", "smart_222_raw", "smart_220_raw", "smart_225_raw", "smart_3_raw"],
+"svm_57.pkl":["smart_12_raw", "smart_252_raw", "smart_190_raw", "smart_226_raw", "smart_10_raw", "smart_189_raw", "smart_193_raw", "smart_2_raw", "smart_9_raw", "smart_223_raw"],
+"svm_236.pkl":["smart_200_raw", "smart_189_raw", "smart_226_raw", "smart_252_raw", "smart_250_raw", "smart_193_raw", "smart_13_raw", "smart_2_raw", "smart_254_raw", "smart_22_raw", "smart_9_raww"],
+"svm_208.pkl":["smart_223_raw", "smart_15_raw", "smart_251_raw", "smart_5_raw", "smart_198_raw", "smart_252_raw", "smart_4_raw", "smart_8_raw", "smart_220_raw", "smart_254_raw", "smart_193_raw"],
+"svm_230.pkl":["smart_184_raw", "smart_5_raw", "smart_191_raw", "smart_198_raw", "smart_11_raw", "smart_255_raw", "smart_189_raw", "smart_254_raw", "smart_196_raw", "smart_199_raw", "smart_223_raw"],
+"svm_134.pkl":["smart_8_raw", "smart_194_raw", "smart_4_raw", "smart_189_raw", "smart_223_raw", "smart_5_raw", "smart_187_raw", "smart_9_raw", "smart_192_raw", "smart_220_raw"],
+"svm_71.pkl":["smart_220_raw", "smart_13_raw", "smart_194_raw", "smart_197_raw", "smart_192_raw", "smart_22_raw", "smart_184_raw", "smart_199_raw", "smart_222_raw", "smart_183_raw"],
+"svm_109.pkl":["smart_224_raw", "smart_252_raw", "smart_2_raw", "smart_200_raw", "smart_5_raw", "smart_194_raw", "smart_222_raw", "smart_198_raw", "smart_4_raw", "smart_13_raw"]
+}
--- /dev/null
+"""
+diskprediction with local predictor
+"""
+from datetime import datetime
+import json
+from threading import Event
+import time
+
+from mgr_module import MgrModule, CommandResult
+
+
+TIME_FORMAT = '%Y%m%d-%H%M%S'
+TIME_DAYS = 24*60*60
+TIME_WEEK = TIME_DAYS * 7
+
+
+class Module(MgrModule):
+ OPTIONS = [
+ {
+ 'name': 'sleep_interval',
+ 'default': str(600),
+ },
+ {
+ 'name': 'predict_interval',
+ 'default': str(86400),
+ },
+ ]
+
+ COMMANDS = []
+
+ def __init__(self, *args, **kwargs):
+ super(Module, self).__init__(*args, **kwargs)
+ # options
+ for opt in self.OPTIONS:
+ setattr(self, opt['name'], opt['default'])
+ # other
+ self.run = True
+ self.event = Event()
+
+ def refresh_config(self):
+ for opt in self.OPTIONS:
+ setattr(self,
+ opt['name'],
+ self.get_config(opt['name']) or opt['default'])
+ self.log.debug(' %s = %s', opt['name'], getattr(self, opt['name']))
+
+ def handle_command(self, _, cmd):
+ self.log.debug('handle_command cmd: %s', cmd)
+ raise NotImplementedError(cmd['prefix'])
+
+ def self_test(self):
+ ret, out, err = self.predict_all_devices()
+ assert ret == 0
+ return 0, 'self test succeed', ''
+
+ def serve(self):
+ self.log.info('Starting diskprediction local module')
+ last_predicted = None
+ ls = self.get_store('last_predicted')
+ if ls:
+ try:
+ last_predicted = datetime.strptime(ls, TIME_FORMAT)
+ except ValueError:
+ pass
+ self.log.debug('Last predicted %s', last_predicted)
+
+ while self.run:
+ self.refresh_config()
+ mode = self.get_option('device_failure_prediction_mode')
+ if mode == 'local':
+ now = datetime.utcnow()
+ if not last_predicted:
+ next_predicted = now
+ else:
+ predicted_frequency = int(self.predict_interval) or 86400
+ seconds = (last_predicted - datetime.utcfromtimestamp(0)).total_seconds()
+ seconds -= seconds % predicted_frequency
+ seconds += predicted_frequency
+ next_predicted = datetime.utcfromtimestamp(seconds)
+ if last_predicted:
+ self.log.debug('Last scrape %s, next scrape due %s',
+ last_predicted.strftime(TIME_FORMAT),
+ next_predicted.strftime(TIME_FORMAT))
+ else:
+ self.log.debug('Last scrape never, next scrape due %s',
+ next_predicted.strftime(TIME_FORMAT))
+ if now >= next_predicted:
+ self.predict_all_device()
+ last_predicted = now
+ self.set_store('last_predicted', last_predicted.strftime(TIME_FORMAT))
+
+ sleep_interval = int(self.sleep_interval) or 60
+ self.log.debug('Sleeping for %d seconds', sleep_interval)
+ self.event.wait(sleep_interval)
+ self.event.clear()
+
+ def shutdown(self):
+ self.log.info('Stopping')
+ self.run = False
+ self.event.set()
+
+ @staticmethod
+ def _convert_timestamp(predicted_timestamp, life_expectancy_day):
+ """
+ :param predicted_timestamp: unit is nanoseconds
+ :param life_expectancy_day: unit is seconds
+ :return:
+ date format '%Y-%m-%d' ex. 2018-01-01
+ """
+ return datetime.fromtimestamp(
+ predicted_timestamp / (1000 ** 3) + life_expectancy_day).strftime('%Y-%m-%d')
+
+ def _predict_life_expentancy(self, devid):
+ predicted_result = ''
+ from .predictor import get_diskfailurepredictor_path, DiskFailurePredictor
+ health_data = {}
+ predict_datas = []
+ try:
+ r, outb, outs = self.remote('devicehealth', 'show_device_metrics', devid=devid, sample='')
+ if r != 0:
+ self.log.error('failed to get device %s health', devid)
+ health_data = {}
+ else:
+ health_data = json.loads(outb)
+ except Exception as e:
+ self.log.error('failed to get device %s health data due to %s', devid, str(e))
+
+ obj_predictor = DiskFailurePredictor()
+ obj_predictor.initialize("{}/models".format(get_diskfailurepredictor_path()))
+
+ if len(health_data) >= 6:
+ o_keys = sorted(health_data.keys(), reverse=True)
+ for o_key in o_keys:
+ dev_smart = {}
+ s_val = health_data[o_key]
+ ata_smart = s_val.get('ata_smart_attributes', {})
+ for attr in ata_smart.get('table', []):
+ if attr.get('raw', {}).get('string'):
+ if str(attr.get('raw', {}).get('string', '0')).isdigit():
+ dev_smart['smart_%s_raw' % attr.get('id')] = \
+ int(attr.get('raw', {}).get('string', '0'))
+ else:
+ if str(attr.get('raw', {}).get('string', '0')).split(' ')[0].isdigit():
+ dev_smart['smart_%s_raw' % attr.get('id')] = \
+ int(attr.get('raw', {}).get('string',
+ '0').split(' ')[0])
+ else:
+ dev_smart['smart_%s_raw' % attr.get('id')] = \
+ attr.get('raw', {}).get('value', 0)
+ if s_val.get('power_on_time', {}).get('hours') is not None:
+ dev_smart['smart_9_raw'] = int(s_val['power_on_time']['hours'])
+ if dev_smart:
+ predict_datas.append(dev_smart)
+ if len(predict_datas) >= 12:
+ break
+ else:
+ self.log.error('unable to predict device due to health data records less than 6 days')
+
+ if predict_datas:
+ predicted_result = obj_predictor.predict(predict_datas)
+ return predicted_result
+
+ def predict_life_expentancy(self, devid):
+ result = self._predict_life_expentancy(devid)
+ if result.lower() == 'good':
+ return 0, '>6w', ''
+ elif result.lower() == 'warning':
+ return 0, '>=2w and <=6w', ''
+ elif result.lower() == 'bad':
+ return 0, '<2w', ''
+ else:
+ return 0, 'unknown', ''
+
+ def _reset_device_life_expectancy(self, device_id):
+ result = CommandResult('')
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'device rm-life-expectancy',
+ 'devid': device_id
+ }), '')
+ ret, _, outs = result.wait()
+ if ret != 0:
+ self.log.error(
+ 'failed to reset device life expectancy, %s' % outs)
+ return ret
+
+ def _set_device_life_expectancy(self, device_id, from_date, to_date=None):
+ result = CommandResult('')
+
+ if to_date is None:
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'device set-life-expectancy',
+ 'devid': device_id,
+ 'from': from_date
+ }), '')
+ else:
+ self.send_command(result, 'mon', '', json.dumps({
+ 'prefix': 'device set-life-expectancy',
+ 'devid': device_id,
+ 'from': from_date,
+ 'to': to_date
+ }), '')
+ ret, _, outs = result.wait()
+ if ret != 0:
+ self.log.error(
+ 'failed to set device life expectancy, %s' % outs)
+ return ret
+
+ def predict_all_devices(self):
+ devices = self.get('devices').get('devices', [])
+ for devInfo in devices:
+ if not devInfo.get('daemons'):
+ continue
+ if not devInfo.get('devid'):
+ continue
+ result = self._predict_life_expentancy(devInfo['devid'])
+ if result == 'unknown':
+ self._reset_device_life_expectancy(devInfo['devid'])
+ continue
+ predicted = int(time.time() * (1000 ** 3))
+
+ if result.lower() == 'good':
+ life_expectancy_day_min = (TIME_WEEK * 6) + TIME_DAYS
+ life_expectancy_day_max = None
+ elif result.lower() == 'warning':
+ life_expectancy_day_min = (TIME_WEEK * 2)
+ life_expectancy_day_max = (TIME_WEEK * 6)
+ elif result.lower() == 'bad':
+ life_expectancy_day_min = 0
+ life_expectancy_day_max = (TIME_WEEK * 2) - TIME_DAYS
+ else:
+ predicted = None
+ life_expectancy_day_min = None
+ life_expectancy_day_max = None
+
+ if predicted and devInfo['devid'] and life_expectancy_day_min:
+ from_date = None
+ to_date = None
+ try:
+ if life_expectancy_day_min:
+ from_date = self._convert_timestamp(predicted, life_expectancy_day_min)
+
+ if life_expectancy_day_max:
+ to_date = self._convert_timestamp(predicted, life_expectancy_day_max)
+
+ self._set_device_life_expectancy(devInfo['devid'], from_date, to_date)
+ self._logger.info(
+ 'succeed to set device {} life expectancy from: {}, to: {}'.format(
+ devInfo['devid'], from_date, to_date))
+ except Exception as e:
+ self._logger.error(
+ 'failed to set device {} life expectancy from: {}, to: {}, {}'.format(
+ devInfo['devid'], from_date, to_date, str(e)))
+ else:
+ self._reset_device_life_expectancy(devInfo['devid'])
+ return 0, 'succeed to predicted all devices', ''
--- /dev/null
+"""Sample code for disk failure prediction.
+
+This sample code is a community version for anyone who is interested in Machine
+Learning and care about disk failure.
+
+This class provides a disk failure prediction module. Given models dirpath to
+initialize a predictor instance and then use 6 days data to predict. Predict
+function will return a string to indicate disk failure status: "Good",
+"Warning", "Bad", or "Unknown".
+
+An example code is as follows:
+
+>>> model = disk_failure_predictor.DiskFailurePredictor()
+>>> status = model.initialize("./models")
+>>> if status:
+>>> model.predict(disk_days)
+'Bad'
+
+
+Provided by ProphetStor Data Services Inc.
+http://www.prophetstor.com/
+
+"""
+
+from __future__ import print_function
+import os
+import json
+import pickle
+
+
+def get_diskfailurepredictor_path():
+ path = os.path.abspath(__file__)
+ dir_path = os.path.dirname(path)
+ return dir_path
+
+
+class DiskFailurePredictor(object):
+ """Disk failure prediction
+
+ This class implements a disk failure prediction module.
+ """
+
+ CONFIG_FILE = "config.json"
+ EXCLUDED_ATTRS = ['smart_9_raw', 'smart_241_raw', 'smart_242_raw']
+
+ def __init__(self):
+ """
+ This function may throw exception due to wrong file operation.
+ """
+
+ self.model_dirpath = ""
+ self.model_context = {}
+
+ def initialize(self, model_dirpath):
+ """
+ Initialize all models.
+
+ Args: None
+
+ Returns:
+ Error message. If all goes well, return an empty string.
+
+ Raises:
+ """
+
+ config_path = os.path.join(model_dirpath, self.CONFIG_FILE)
+ if not os.path.isfile(config_path):
+ return "Missing config file: " + config_path
+ else:
+ with open(config_path) as f_conf:
+ self.model_context = json.load(f_conf)
+
+ for model_name in self.model_context:
+ model_path = os.path.join(model_dirpath, model_name)
+
+ if not os.path.isfile(model_path):
+ return "Missing model file: " + model_path
+
+ self.model_dirpath = model_dirpath
+
+ def __preprocess(self, disk_days):
+ """
+ Preprocess disk attributes.
+
+ Args:
+ disk_days: Refer to function predict(...).
+
+ Returns:
+ new_disk_days: Processed disk days.
+ """
+
+ req_attrs = []
+ new_disk_days = []
+
+ attr_list = set.intersection(*[set(disk_day.keys())
+ for disk_day in disk_days])
+ for attr in attr_list:
+ if (attr.startswith('smart_') and attr.endswith('_raw')) and \
+ attr not in self.EXCLUDED_ATTRS:
+ req_attrs.append(attr)
+
+ for disk_day in disk_days:
+ new_disk_day = {}
+ for attr in req_attrs:
+ if float(disk_day[attr]) >= 0.0:
+ new_disk_day[attr] = disk_day[attr]
+
+ new_disk_days.append(new_disk_day)
+
+ return new_disk_days
+
+ @staticmethod
+ def __get_diff_attrs(disk_days):
+ """
+ Get 5 days differential attributes.
+
+ Args:
+ disk_days: Refer to function predict(...).
+
+ Returns:
+ attr_list: All S.M.A.R.T. attributes used in given disk. Here we
+ use intersection set of all disk days.
+
+ diff_disk_days: A list struct comprises 5 dictionaries, each
+ dictionary contains differential attributes.
+
+ Raises:
+ Exceptions of wrong list/dict operations.
+ """
+
+ all_attrs = [set(disk_day.keys()) for disk_day in disk_days]
+ attr_list = list(set.intersection(*all_attrs))
+ attr_list = disk_days[0].keys()
+ prev_days = disk_days[:-1]
+ curr_days = disk_days[1:]
+ diff_disk_days = []
+
+ for prev, cur in zip(prev_days, curr_days):
+ diff_disk_days.append({attr:(int(cur[attr]) - int(prev[attr]))
+ for attr in attr_list})
+
+ return attr_list, diff_disk_days
+
+ def __get_best_models(self, attr_list):
+ """
+ Find the best model from model list according to given attribute list.
+
+ Args:
+ attr_list: All S.M.A.R.T. attributes used in given disk.
+
+ Returns:
+ modelpath: The best model for the given attribute list.
+ model_attrlist: 'Ordered' attribute list of the returned model.
+ Must be aware that SMART attributes is in order.
+
+ Raises:
+ """
+
+ models = self.model_context.keys()
+
+ scores = []
+ for model_name in models:
+ scores.append(sum(attr in attr_list
+ for attr in self.model_context[model_name]))
+ max_score = max(scores)
+
+ # Skip if too few matched attributes.
+ if max_score < 3:
+ print("Too few matched attributes")
+ return None
+
+ best_models = {}
+ best_model_indices = [idx for idx, score in enumerate(scores)
+ if score > max_score - 2]
+ for model_idx in best_model_indices:
+ model_name = list(models)[model_idx]
+ model_path = os.path.join(self.model_dirpath, model_name)
+ model_attrlist = self.model_context[model_name]
+ best_models[model_path] = model_attrlist
+
+ return best_models
+ # return os.path.join(self.model_dirpath, model_name), model_attrlist
+
+ @staticmethod
+ def __get_ordered_attrs(disk_days, model_attrlist):
+ """
+ Return ordered attributes of given disk days.
+
+ Args:
+ disk_days: Unordered disk days.
+ model_attrlist: Model's ordered attribute list.
+
+ Returns:
+ ordered_attrs: Ordered disk days.
+
+ Raises: None
+ """
+
+ ordered_attrs = []
+
+ for one_day in disk_days:
+ one_day_attrs = []
+
+ for attr in model_attrlist:
+ if attr in one_day:
+ one_day_attrs.append(one_day[attr])
+ else:
+ one_day_attrs.append(0)
+
+ ordered_attrs.append(one_day_attrs)
+
+ return ordered_attrs
+
+ def predict(self, disk_days):
+ """
+ Predict using given 6-days disk S.M.A.R.T. attributes.
+
+ Args:
+ disk_days: A list struct comprises 6 dictionaries. These
+ dictionaries store 'consecutive' days of disk SMART
+ attributes.
+ Returns:
+ A string indicates prediction result. One of following four strings
+ will be returned according to disk failure status:
+ (1) Good : Disk is health
+ (2) Warning : Disk has some symptoms but may not fail immediately
+ (3) Bad : Disk is in danger and data backup is highly recommended
+ (4) Unknown : Not enough data for prediction.
+
+ Raises:
+ Pickle exceptions
+ """
+
+ all_pred = []
+
+ proc_disk_days = self.__preprocess(disk_days)
+ attr_list, diff_data = DiskFailurePredictor.__get_diff_attrs(proc_disk_days)
+ modellist = self.__get_best_models(attr_list)
+ if modellist is None:
+ return "Unknown"
+
+ for modelpath in modellist:
+ model_attrlist = modellist[modelpath]
+ ordered_data = DiskFailurePredictor.__get_ordered_attrs(
+ diff_data, model_attrlist)
+
+ try:
+ with open(modelpath, 'rb') as f_model:
+ clf = pickle.load(f_model)
+
+ except UnicodeDecodeError:
+ # Compatibility for python3
+ with open(modelpath, 'rb') as f_model:
+ clf = pickle.load(f_model, encoding='latin1')
+
+ pred = clf.predict(ordered_data)
+
+ all_pred.append(1 if any(pred) else 0)
+
+ score = 2 ** sum(all_pred) - len(modellist)
+ if score > 10:
+ return "Bad"
+ if score > 4:
+ return "Warning"
+ return "Good"