--- /dev/null
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * A memslot-related performance benchmark.
+ *
+ * Copyright (C) 2021 Oracle and/or its affiliates.
+ *
+ * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
+ */
+#include <pthread.h>
+#include <sched.h>
+#include <semaphore.h>
+#include <stdatomic.h>
+#include <stdbool.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <sys/mman.h>
+#include <time.h>
+#include <unistd.h>
+
+#include <linux/compiler.h>
+
+#include <test_util.h>
+#include <kvm_util.h>
+#include <processor.h>
+
+#define VCPU_ID 0
+
+#define MEM_SIZE               ((512U << 20) + 4096)
+#define MEM_SIZE_PAGES         (MEM_SIZE / 4096)
+#define MEM_GPA                0x10000000UL
+#define MEM_AUX_GPA            MEM_GPA
+#define MEM_SYNC_GPA           MEM_AUX_GPA
+#define MEM_TEST_GPA           (MEM_AUX_GPA + 4096)
+#define MEM_TEST_SIZE          (MEM_SIZE - 4096)
+static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
+static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
+
+/*
+ * 32 MiB is max size that gets well over 100 iterations on 509 slots.
+ * Considering that each slot needs to have at least one page up to
+ * 8194 slots in use can then be tested (although with slightly
+ * limited resolution).
+ */
+#define MEM_SIZE_MAP           ((32U << 20) + 4096)
+#define MEM_SIZE_MAP_PAGES     (MEM_SIZE_MAP / 4096)
+#define MEM_TEST_MAP_SIZE      (MEM_SIZE_MAP - 4096)
+#define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
+static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
+static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
+static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
+static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
+
+/*
+ * 128 MiB is min size that fills 32k slots with at least one page in each
+ * while at the same time gets 100+ iterations in such test
+ */
+#define MEM_TEST_UNMAP_SIZE            (128U << 20)
+#define MEM_TEST_UNMAP_SIZE_PAGES      (MEM_TEST_UNMAP_SIZE / 4096)
+/* 2 MiB chunk size like a typical huge page */
+#define MEM_TEST_UNMAP_CHUNK_PAGES     (2U << (20 - 12))
+static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
+             "invalid unmap test region size");
+static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
+             "invalid unmap test region size");
+static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
+             (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
+             "invalid unmap test region size");
+
+/*
+ * For the move active test the middle of the test area is placed on
+ * a memslot boundary: half lies in the memslot being moved, half in
+ * other memslot(s).
+ *
+ * When running this test with 32k memslots (32764, really) each memslot
+ * contains 4 pages.
+ * The last one additionally contains the remaining 21 pages of memory,
+ * for the total size of 25 pages.
+ * Hence, the maximum size here is 50 pages.
+ */
+#define MEM_TEST_MOVE_SIZE_PAGES       (50)
+#define MEM_TEST_MOVE_SIZE             (MEM_TEST_MOVE_SIZE_PAGES * 4096)
+#define MEM_TEST_MOVE_GPA_DEST         (MEM_GPA + MEM_SIZE)
+static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
+             "invalid move test region size");
+
+#define MEM_TEST_VAL_1 0x1122334455667788
+#define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
+
+struct vm_data {
+       struct kvm_vm *vm;
+       pthread_t vcpu_thread;
+       uint32_t nslots;
+       uint64_t npages;
+       uint64_t pages_per_slot;
+       void **hva_slots;
+       bool mmio_ok;
+       uint64_t mmio_gpa_min;
+       uint64_t mmio_gpa_max;
+};
+
+struct sync_area {
+       atomic_bool start_flag;
+       atomic_bool exit_flag;
+       atomic_bool sync_flag;
+       void *move_area_ptr;
+};
+
+/*
+ * Technically, we need also for the atomic bool to be address-free, which
+ * is recommended, but not strictly required, by C11 for lockless
+ * implementations.
+ * However, in practice both GCC and Clang fulfill this requirement on
+ * all KVM-supported platforms.
+ */
+static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
+
+static sem_t vcpu_ready;
+
+static bool map_unmap_verify;
+
+static bool verbose;
+#define pr_info_v(...)                         \
+       do {                                    \
+               if (verbose)                    \
+                       pr_info(__VA_ARGS__);   \
+       } while (0)
+
+static void *vcpu_worker(void *data)
+{
+       struct vm_data *vm = data;
+       struct kvm_run *run;
+       struct ucall uc;
+       uint64_t cmd;
+
+       run = vcpu_state(vm->vm, VCPU_ID);
+       while (1) {
+               vcpu_run(vm->vm, VCPU_ID);
+
+               if (run->exit_reason == KVM_EXIT_IO) {
+                       cmd = get_ucall(vm->vm, VCPU_ID, &uc);
+                       if (cmd != UCALL_SYNC)
+                               break;
+
+                       sem_post(&vcpu_ready);
+                       continue;
+               }
+
+               if (run->exit_reason != KVM_EXIT_MMIO)
+                       break;
+
+               TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit");
+               TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
+               TEST_ASSERT(run->mmio.len == 8,
+                           "Unexpected exit mmio size = %u", run->mmio.len);
+               TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min &&
+                           run->mmio.phys_addr <= vm->mmio_gpa_max,
+                           "Unexpected exit mmio address = 0x%llx",
+                           run->mmio.phys_addr);
+       }
+
+       if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT)
+               TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0],
+                         __FILE__, uc.args[1], uc.args[2]);
+
+       return NULL;
+}
+
+static void wait_for_vcpu(void)
+{
+       struct timespec ts;
+
+       TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
+                   "clock_gettime() failed: %d\n", errno);
+
+       ts.tv_sec += 2;
+       TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
+                   "sem_timedwait() failed: %d\n", errno);
+}
+
+static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
+{
+       uint64_t gpage, pgoffs;
+       uint32_t slot, slotoffs;
+       void *base;
+
+       TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
+       TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
+                   "Too high gpa to translate");
+       gpa -= MEM_GPA;
+
+       gpage = gpa / 4096;
+       pgoffs = gpa % 4096;
+       slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
+       slotoffs = gpage - (slot * data->pages_per_slot);
+
+       if (rempages) {
+               uint64_t slotpages;
+
+               if (slot == data->nslots - 1)
+                       slotpages = data->npages - slot * data->pages_per_slot;
+               else
+                       slotpages = data->pages_per_slot;
+
+               TEST_ASSERT(!pgoffs,
+                           "Asking for remaining pages in slot but gpa not page aligned");
+               *rempages = slotpages - slotoffs;
+       }
+
+       base = data->hva_slots[slot];
+       return (uint8_t *)base + slotoffs * 4096 + pgoffs;
+}
+
+static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
+{
+       TEST_ASSERT(slot < data->nslots, "Too high slot number");
+
+       return MEM_GPA + slot * data->pages_per_slot * 4096;
+}
+
+static struct vm_data *alloc_vm(void)
+{
+       struct vm_data *data;
+
+       data = malloc(sizeof(*data));
+       TEST_ASSERT(data, "malloc(vmdata) failed");
+
+       data->vm = NULL;
+       data->hva_slots = NULL;
+
+       return data;
+}
+
+static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
+                      void *guest_code, uint64_t mempages,
+                      struct timespec *slot_runtime)
+{
+       uint32_t max_mem_slots;
+       uint64_t rempages;
+       uint64_t guest_addr;
+       uint32_t slot;
+       struct timespec tstart;
+       struct sync_area *sync;
+
+       max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
+       TEST_ASSERT(max_mem_slots > 1,
+                   "KVM_CAP_NR_MEMSLOTS should be greater than 1");
+       TEST_ASSERT(nslots > 1 || nslots == -1,
+                   "Slot count cap should be greater than 1");
+       if (nslots != -1)
+               max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
+       pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
+
+       TEST_ASSERT(mempages > 1,
+                   "Can't test without any memory");
+
+       data->npages = mempages;
+       data->nslots = max_mem_slots - 1;
+       data->pages_per_slot = mempages / data->nslots;
+       if (!data->pages_per_slot) {
+               *maxslots = mempages + 1;
+               return false;
+       }
+
+       rempages = mempages % data->nslots;
+       data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
+       TEST_ASSERT(data->hva_slots, "malloc() fail");
+
+       data->vm = vm_create_default(VCPU_ID, mempages, guest_code);
+
+       pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
+               max_mem_slots - 1, data->pages_per_slot, rempages);
+
+       clock_gettime(CLOCK_MONOTONIC, &tstart);
+       for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
+               uint64_t npages;
+
+               npages = data->pages_per_slot;
+               if (slot == max_mem_slots - 1)
+                       npages += rempages;
+
+               vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
+                                           guest_addr, slot, npages,
+                                           0);
+               guest_addr += npages * 4096;
+       }
+       *slot_runtime = timespec_elapsed(tstart);
+
+       for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
+               uint64_t npages;
+               uint64_t gpa;
+
+               npages = data->pages_per_slot;
+               if (slot == max_mem_slots - 2)
+                       npages += rempages;
+
+               gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
+                                        slot + 1);
+               TEST_ASSERT(gpa == guest_addr,
+                           "vm_phy_pages_alloc() failed\n");
+
+               data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
+               memset(data->hva_slots[slot], 0, npages * 4096);
+
+               guest_addr += npages * 4096;
+       }
+
+       virt_map(data->vm, MEM_GPA, MEM_GPA, mempages, 0);
+
+       sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
+       atomic_init(&sync->start_flag, false);
+       atomic_init(&sync->exit_flag, false);
+       atomic_init(&sync->sync_flag, false);
+
+       data->mmio_ok = false;
+
+       return true;
+}
+
+static void launch_vm(struct vm_data *data)
+{
+       pr_info_v("Launching the test VM\n");
+
+       pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
+
+       /* Ensure the guest thread is spun up. */
+       wait_for_vcpu();
+}
+
+static void free_vm(struct vm_data *data)
+{
+       kvm_vm_free(data->vm);
+       free(data->hva_slots);
+       free(data);
+}
+
+static void wait_guest_exit(struct vm_data *data)
+{
+       pthread_join(data->vcpu_thread, NULL);
+}
+
+static void let_guest_run(struct sync_area *sync)
+{
+       atomic_store_explicit(&sync->start_flag, true, memory_order_release);
+}
+
+static void guest_spin_until_start(void)
+{
+       struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
+
+       while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
+               ;
+}
+
+static void make_guest_exit(struct sync_area *sync)
+{
+       atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
+}
+
+static bool _guest_should_exit(void)
+{
+       struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
+
+       return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
+}
+
+#define guest_should_exit() unlikely(_guest_should_exit())
+
+/*
+ * noinline so we can easily see how much time the host spends waiting
+ * for the guest.
+ * For the same reason use alarm() instead of polling clock_gettime()
+ * to implement a wait timeout.
+ */
+static noinline void host_perform_sync(struct sync_area *sync)
+{
+       alarm(2);
+
+       atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
+       while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
+               ;
+
+       alarm(0);
+}
+
+static bool guest_perform_sync(void)
+{
+       struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
+       bool expected;
+
+       do {
+               if (guest_should_exit())
+                       return false;
+
+               expected = true;
+       } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
+                                                       &expected, false,
+                                                       memory_order_acq_rel,
+                                                       memory_order_relaxed));
+
+       return true;
+}
+
+static void guest_code_test_memslot_move(void)
+{
+       struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
+       uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
+
+       GUEST_SYNC(0);
+
+       guest_spin_until_start();
+
+       while (!guest_should_exit()) {
+               uintptr_t ptr;
+
+               for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
+                    ptr += 4096)
+                       *(uint64_t *)ptr = MEM_TEST_VAL_1;
+
+               /*
+                * No host sync here since the MMIO exits are so expensive
+                * that the host would spend most of its time waiting for
+                * the guest and so instead of measuring memslot move
+                * performance we would measure the performance and
+                * likelihood of MMIO exits
+                */
+       }
+
+       GUEST_DONE();
+}
+
+static void guest_code_test_memslot_map(void)
+{
+       struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
+
+       GUEST_SYNC(0);
+
+       guest_spin_until_start();
+
+       while (1) {
+               uintptr_t ptr;
+
+               for (ptr = MEM_TEST_GPA;
+                    ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
+                       *(uint64_t *)ptr = MEM_TEST_VAL_1;
+
+               if (!guest_perform_sync())
+                       break;
+
+               for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
+                    ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
+                       *(uint64_t *)ptr = MEM_TEST_VAL_2;
+
+               if (!guest_perform_sync())
+                       break;
+       }
+
+       GUEST_DONE();
+}
+
+static void guest_code_test_memslot_unmap(void)
+{
+       struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
+
+       GUEST_SYNC(0);
+
+       guest_spin_until_start();
+
+       while (1) {
+               uintptr_t ptr = MEM_TEST_GPA;
+
+               /*
+                * We can afford to access (map) just a small number of pages
+                * per host sync as otherwise the host will spend
+                * a significant amount of its time waiting for the guest
+                * (instead of doing unmap operations), so this will
+                * effectively turn this test into a map performance test.
+                *
+                * Just access a single page to be on the safe side.
+                */
+               *(uint64_t *)ptr = MEM_TEST_VAL_1;
+
+               if (!guest_perform_sync())
+                       break;
+
+               ptr += MEM_TEST_UNMAP_SIZE / 2;
+               *(uint64_t *)ptr = MEM_TEST_VAL_2;
+
+               if (!guest_perform_sync())
+                       break;
+       }
+
+       GUEST_DONE();
+}
+
+static void guest_code_test_memslot_rw(void)
+{
+       GUEST_SYNC(0);
+
+       guest_spin_until_start();
+
+       while (1) {
+               uintptr_t ptr;
+
+               for (ptr = MEM_TEST_GPA;
+                    ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
+                       *(uint64_t *)ptr = MEM_TEST_VAL_1;
+
+               if (!guest_perform_sync())
+                       break;
+
+               for (ptr = MEM_TEST_GPA + 4096 / 2;
+                    ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
+                       uint64_t val = *(uint64_t *)ptr;
+
+                       GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
+                       *(uint64_t *)ptr = 0;
+               }
+
+               if (!guest_perform_sync())
+                       break;
+       }
+
+       GUEST_DONE();
+}
+
+static bool test_memslot_move_prepare(struct vm_data *data,
+                                     struct sync_area *sync,
+                                     uint64_t *maxslots, bool isactive)
+{
+       uint64_t movesrcgpa, movetestgpa;
+
+       movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
+
+       if (isactive) {
+               uint64_t lastpages;
+
+               vm_gpa2hva(data, movesrcgpa, &lastpages);
+               if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
+                       *maxslots = 0;
+                       return false;
+               }
+       }
+
+       movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
+       sync->move_area_ptr = (void *)movetestgpa;
+
+       if (isactive) {
+               data->mmio_ok = true;
+               data->mmio_gpa_min = movesrcgpa;
+               data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
+       }
+
+       return true;
+}
+
+static bool test_memslot_move_prepare_active(struct vm_data *data,
+                                            struct sync_area *sync,
+                                            uint64_t *maxslots)
+{
+       return test_memslot_move_prepare(data, sync, maxslots, true);
+}
+
+static bool test_memslot_move_prepare_inactive(struct vm_data *data,
+                                              struct sync_area *sync,
+                                              uint64_t *maxslots)
+{
+       return test_memslot_move_prepare(data, sync, maxslots, false);
+}
+
+static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
+{
+       uint64_t movesrcgpa;
+
+       movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
+       vm_mem_region_move(data->vm, data->nslots - 1 + 1,
+                          MEM_TEST_MOVE_GPA_DEST);
+       vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
+}
+
+static void test_memslot_do_unmap(struct vm_data *data,
+                                 uint64_t offsp, uint64_t count)
+{
+       uint64_t gpa, ctr;
+
+       for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
+               uint64_t npages;
+               void *hva;
+               int ret;
+
+               hva = vm_gpa2hva(data, gpa, &npages);
+               TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
+               npages = min(npages, count - ctr);
+               ret = madvise(hva, npages * 4096, MADV_DONTNEED);
+               TEST_ASSERT(!ret,
+                           "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
+                           hva, gpa);
+               ctr += npages;
+               gpa += npages * 4096;
+       }
+       TEST_ASSERT(ctr == count,
+                   "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
+}
+
+static void test_memslot_map_unmap_check(struct vm_data *data,
+                                        uint64_t offsp, uint64_t valexp)
+{
+       uint64_t gpa;
+       uint64_t *val;
+
+       if (!map_unmap_verify)
+               return;
+
+       gpa = MEM_TEST_GPA + offsp * 4096;
+       val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
+       TEST_ASSERT(*val == valexp,
+                   "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
+                   *val, valexp, gpa);
+       *val = 0;
+}
+
+static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
+{
+       /*
+        * Unmap the second half of the test area while guest writes to (maps)
+        * the first half.
+        */
+       test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
+                             MEM_TEST_MAP_SIZE_PAGES / 2);
+
+       /*
+        * Wait for the guest to finish writing the first half of the test
+        * area, verify the written value on the first and the last page of
+        * this area and then unmap it.
+        * Meanwhile, the guest is writing to (mapping) the second half of
+        * the test area.
+        */
+       host_perform_sync(sync);
+       test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
+       test_memslot_map_unmap_check(data,
+                                    MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
+                                    MEM_TEST_VAL_1);
+       test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
+
+
+       /*
+        * Wait for the guest to finish writing the second half of the test
+        * area and verify the written value on the first and the last page
+        * of this area.
+        * The area will be unmapped at the beginning of the next loop
+        * iteration.
+        * Meanwhile, the guest is writing to (mapping) the first half of
+        * the test area.
+        */
+       host_perform_sync(sync);
+       test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
+                                    MEM_TEST_VAL_2);
+       test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
+                                    MEM_TEST_VAL_2);
+}
+
+static void test_memslot_unmap_loop_common(struct vm_data *data,
+                                          struct sync_area *sync,
+                                          uint64_t chunk)
+{
+       uint64_t ctr;
+
+       /*
+        * Wait for the guest to finish mapping page(s) in the first half
+        * of the test area, verify the written value and then perform unmap
+        * of this area.
+        * Meanwhile, the guest is writing to (mapping) page(s) in the second
+        * half of the test area.
+        */
+       host_perform_sync(sync);
+       test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
+       for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
+               test_memslot_do_unmap(data, ctr, chunk);
+
+       /* Likewise, but for the opposite host / guest areas */
+       host_perform_sync(sync);
+       test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
+                                    MEM_TEST_VAL_2);
+       for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
+            ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
+               test_memslot_do_unmap(data, ctr, chunk);
+}
+
+static void test_memslot_unmap_loop(struct vm_data *data,
+                                   struct sync_area *sync)
+{
+       test_memslot_unmap_loop_common(data, sync, 1);
+}
+
+static void test_memslot_unmap_loop_chunked(struct vm_data *data,
+                                           struct sync_area *sync)
+{
+       test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
+}
+
+static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
+{
+       uint64_t gptr;
+
+       for (gptr = MEM_TEST_GPA + 4096 / 2;
+            gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
+               *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
+
+       host_perform_sync(sync);
+
+       for (gptr = MEM_TEST_GPA;
+            gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
+               uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
+               uint64_t val = *vptr;
+
+               TEST_ASSERT(val == MEM_TEST_VAL_1,
+                           "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
+                           val, gptr);
+               *vptr = 0;
+       }
+
+       host_perform_sync(sync);
+}
+
+struct test_data {
+       const char *name;
+       uint64_t mem_size;
+       void (*guest_code)(void);
+       bool (*prepare)(struct vm_data *data, struct sync_area *sync,
+                       uint64_t *maxslots);
+       void (*loop)(struct vm_data *data, struct sync_area *sync);
+};
+
+static bool test_execute(int nslots, uint64_t *maxslots,
+                        unsigned int maxtime,
+                        const struct test_data *tdata,
+                        uint64_t *nloops,
+                        struct timespec *slot_runtime,
+                        struct timespec *guest_runtime)
+{
+       uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
+       struct vm_data *data;
+       struct sync_area *sync;
+       struct timespec tstart;
+       bool ret = true;
+
+       data = alloc_vm();
+       if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
+                       mem_size, slot_runtime)) {
+               ret = false;
+               goto exit_free;
+       }
+
+       sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
+
+       if (tdata->prepare &&
+           !tdata->prepare(data, sync, maxslots)) {
+               ret = false;
+               goto exit_free;
+       }
+
+       launch_vm(data);
+
+       clock_gettime(CLOCK_MONOTONIC, &tstart);
+       let_guest_run(sync);
+
+       while (1) {
+               *guest_runtime = timespec_elapsed(tstart);
+               if (guest_runtime->tv_sec >= maxtime)
+                       break;
+
+               tdata->loop(data, sync);
+
+               (*nloops)++;
+       }
+
+       make_guest_exit(sync);
+       wait_guest_exit(data);
+
+exit_free:
+       free_vm(data);
+
+       return ret;
+}
+
+static const struct test_data tests[] = {
+       {
+               .name = "map",
+               .mem_size = MEM_SIZE_MAP_PAGES,
+               .guest_code = guest_code_test_memslot_map,
+               .loop = test_memslot_map_loop,
+       },
+       {
+               .name = "unmap",
+               .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
+               .guest_code = guest_code_test_memslot_unmap,
+               .loop = test_memslot_unmap_loop,
+       },
+       {
+               .name = "unmap chunked",
+               .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
+               .guest_code = guest_code_test_memslot_unmap,
+               .loop = test_memslot_unmap_loop_chunked,
+       },
+       {
+               .name = "move active area",
+               .guest_code = guest_code_test_memslot_move,
+               .prepare = test_memslot_move_prepare_active,
+               .loop = test_memslot_move_loop,
+       },
+       {
+               .name = "move inactive area",
+               .guest_code = guest_code_test_memslot_move,
+               .prepare = test_memslot_move_prepare_inactive,
+               .loop = test_memslot_move_loop,
+       },
+       {
+               .name = "RW",
+               .guest_code = guest_code_test_memslot_rw,
+               .loop = test_memslot_rw_loop
+       },
+};
+
+#define NTESTS ARRAY_SIZE(tests)
+
+struct test_args {
+       int tfirst;
+       int tlast;
+       int nslots;
+       int seconds;
+       int runs;
+};
+
+static void help(char *name, struct test_args *targs)
+{
+       int ctr;
+
+       pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
+               name);
+       pr_info(" -h: print this help screen.\n");
+       pr_info(" -v: enable verbose mode (not for benchmarking).\n");
+       pr_info(" -d: enable extra debug checks.\n");
+       pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
+               targs->nslots);
+       pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
+               targs->tfirst, NTESTS - 1);
+       pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
+               targs->tlast, NTESTS - 1);
+       pr_info(" -l: specify the test length in seconds (currently: %i)\n",
+               targs->seconds);
+       pr_info(" -r: specify the number of runs per test (currently: %i)\n",
+               targs->runs);
+
+       pr_info("\nAvailable tests:\n");
+       for (ctr = 0; ctr < NTESTS; ctr++)
+               pr_info("%d: %s\n", ctr, tests[ctr].name);
+}
+
+static bool parse_args(int argc, char *argv[],
+                      struct test_args *targs)
+{
+       int opt;
+
+       while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
+               switch (opt) {
+               case 'h':
+               default:
+                       help(argv[0], targs);
+                       return false;
+               case 'v':
+                       verbose = true;
+                       break;
+               case 'd':
+                       map_unmap_verify = true;
+                       break;
+               case 's':
+                       targs->nslots = atoi(optarg);
+                       if (targs->nslots <= 0 && targs->nslots != -1) {
+                               pr_info("Slot count cap has to be positive or -1 for no cap\n");
+                               return false;
+                       }
+                       break;
+               case 'f':
+                       targs->tfirst = atoi(optarg);
+                       if (targs->tfirst < 0) {
+                               pr_info("First test to run has to be non-negative\n");
+                               return false;
+                       }
+                       break;
+               case 'e':
+                       targs->tlast = atoi(optarg);
+                       if (targs->tlast < 0 || targs->tlast >= NTESTS) {
+                               pr_info("Last test to run has to be non-negative and less than %zu\n",
+                                       NTESTS);
+                               return false;
+                       }
+                       break;
+               case 'l':
+                       targs->seconds = atoi(optarg);
+                       if (targs->seconds < 0) {
+                               pr_info("Test length in seconds has to be non-negative\n");
+                               return false;
+                       }
+                       break;
+               case 'r':
+                       targs->runs = atoi(optarg);
+                       if (targs->runs <= 0) {
+                               pr_info("Runs per test has to be positive\n");
+                               return false;
+                       }
+                       break;
+               }
+       }
+
+       if (optind < argc) {
+               help(argv[0], targs);
+               return false;
+       }
+
+       if (targs->tfirst > targs->tlast) {
+               pr_info("First test to run cannot be greater than the last test to run\n");
+               return false;
+       }
+
+       return true;
+}
+
+struct test_result {
+       struct timespec slot_runtime, guest_runtime, iter_runtime;
+       int64_t slottimens, runtimens;
+       uint64_t nloops;
+};
+
+static bool test_loop(const struct test_data *data,
+                     const struct test_args *targs,
+                     struct test_result *rbestslottime,
+                     struct test_result *rbestruntime)
+{
+       uint64_t maxslots;
+       struct test_result result;
+
+       result.nloops = 0;
+       if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
+                         &result.nloops,
+                         &result.slot_runtime, &result.guest_runtime)) {
+               if (maxslots)
+                       pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
+                               maxslots);
+               else
+                       pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
+
+               return false;
+       }
+
+       pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
+               result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
+               result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
+       if (!result.nloops) {
+               pr_info("No full loops done - too short test time or system too loaded?\n");
+               return true;
+       }
+
+       result.iter_runtime = timespec_div(result.guest_runtime,
+                                          result.nloops);
+       pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
+               result.nloops,
+               result.iter_runtime.tv_sec,
+               result.iter_runtime.tv_nsec);
+       result.slottimens = timespec_to_ns(result.slot_runtime);
+       result.runtimens = timespec_to_ns(result.iter_runtime);
+
+       /*
+        * Only rank the slot setup time for tests using the whole test memory
+        * area so they are comparable
+        */
+       if (!data->mem_size &&
+           (!rbestslottime->slottimens ||
+            result.slottimens < rbestslottime->slottimens))
+               *rbestslottime = result;
+       if (!rbestruntime->runtimens ||
+           result.runtimens < rbestruntime->runtimens)
+               *rbestruntime = result;
+
+       return true;
+}
+
+int main(int argc, char *argv[])
+{
+       struct test_args targs = {
+               .tfirst = 0,
+               .tlast = NTESTS - 1,
+               .nslots = -1,
+               .seconds = 5,
+               .runs = 20,
+       };
+       struct test_result rbestslottime;
+       int tctr;
+
+       /* Tell stdout not to buffer its content */
+       setbuf(stdout, NULL);
+
+       if (!parse_args(argc, argv, &targs))
+               return -1;
+
+       rbestslottime.slottimens = 0;
+       for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
+               const struct test_data *data = &tests[tctr];
+               unsigned int runctr;
+               struct test_result rbestruntime;
+
+               if (tctr > targs.tfirst)
+                       pr_info("\n");
+
+               pr_info("Testing %s performance with %i runs, %d seconds each\n",
+                       data->name, targs.runs, targs.seconds);
+
+               rbestruntime.runtimens = 0;
+               for (runctr = 0; runctr < targs.runs; runctr++)
+                       if (!test_loop(data, &targs,
+                                      &rbestslottime, &rbestruntime))
+                               break;
+
+               if (rbestruntime.runtimens)
+                       pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
+                               rbestruntime.iter_runtime.tv_sec,
+                               rbestruntime.iter_runtime.tv_nsec,
+                               rbestruntime.nloops);
+       }
+
+       if (rbestslottime.slottimens)
+               pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
+                       rbestslottime.slot_runtime.tv_sec,
+                       rbestslottime.slot_runtime.tv_nsec);
+
+       return 0;
+}