#include <functional>
#include <ostream>
#include <type_traits>
+#include <system_error>
+#include <utility>
#include "rgw_common.h"
#include "rgw_keystone.h"
RGWAuthApplier::aplptr_t authenticate() const override;
};
+
+namespace rgw {
+namespace auth {
+
+using Exception = std::system_error;
+
+
+/* Load information about identity that will be used by RGWOp to authorize
+ * any operation that comes from an authenticated user. */
+class Identity {
+public:
+ typedef std::map<std::string, int> aclspec_t;
+
+ virtual ~Identity() = default;
+
+ /* Translate the ACL provided in @aclspec into concrete permission set that
+ * can be used during the authorization phase (RGWOp::verify_permission).
+ * On error throws rgw::auth::Exception storing the reason.
+ *
+ * NOTE: an implementation is responsible for giving the real semantic to
+ * the items in @aclspec. That is, their meaning may depend on particular
+ * applier that is being used. */
+ virtual uint32_t get_perms_from_aclspec(const aclspec_t& aclspec) const = 0;
+
+ /* Verify whether a given identity *can be treated as* an admin of rgw_user
+ * (account in Swift's terminology) specified in @uid. On error throws
+ * rgw::auth::Exception storing the reason. */
+ virtual bool is_admin_of(const rgw_user& uid) const = 0;
+
+ /* Verify whether a given identity *is* the owner of the rgw_user (account
+ * in the Swift's terminology) specified in @uid. On internal error throws
+ * rgw::auth::Exception storing the reason. */
+ virtual bool is_owner_of(const rgw_user& uid) const = 0;
+
+ /* Return the permission mask that is used to narrow down the set of
+ * operations allowed for a given identity. This method reflects the idea
+ * of subuser tied to RGWUserInfo. On error throws rgw::auth::Exception
+ * with the reason. */
+ virtual uint32_t get_perm_mask() const = 0;
+
+ virtual bool is_anonymous() const final {
+ /* If the identity owns the anonymous account (rgw_user), it's considered
+ * the anonymous identity. On error throws rgw::auth::Exception storing
+ * the reason. */
+ return is_owner_of(rgw_user(RGW_USER_ANON_ID));
+ }
+
+ virtual void to_str(std::ostream& out) const = 0;
+};
+
+inline std::ostream& operator<<(std::ostream& out,
+ const rgw::auth::Identity& id) {
+ id.to_str(out);
+ return out;
+}
+
+
+/* Interface class for authentication backends (auth engines) in RadosGW.
+ *
+ * An engine is supposed only to authenticate (not authorize!) requests
+ * basing on their req_state and provide an upper layer with:
+ * - rgw::auth::IdentityApplier to commit all changes to the request state as
+ * well as to the RADOS store (creating an account, synchronizing
+ * user-related information with external databases and so on).
+ * - rgw::auth::Completer (optionally) to finish the authentication
+ * of the request. Typical use case is verifying message integrity
+ * in AWS Auth v4 and browser uploads (RGWPostObj).
+ *
+ * The authentication process consists two steps:
+ * - Engine::authenticate() supposed to be called before *initiating*
+ * any modifications to RADOS store that are related to an operation
+ * a client wants to perform (RGWOp::execute).
+ * - Completer::complete() supposed to be called, if completer has been
+ * returned, after the authenticate() step but before *committing*
+ * those modifications or sending a response (RGWOp::complete).
+ *
+ * An engine outlives both Applier and Completer. It's
+ * intended to live since RadosGW's initialization and handle multiple
+ * requests till a reconfiguration.
+ *
+ * Auth engine MUST NOT make any changes to req_state nor RADOS store.
+ * This is solely an Applier's responsibility!
+ *
+ * Separation between authentication and global state modification has
+ * been introduced because many auth engines are orthogonal to appliers
+ * and thus they can be decoupled. Additional motivation is to clearly
+ * distinguish all portions of code modifying data structures. */
+class Engine {
+public:
+ virtual ~Engine() = default;
+
+ using result_t = std::pair<std::unique_ptr<class IdentityApplier>,
+ std::unique_ptr<class Completer>>;
+
+ /* Get name of the auth engine. */
+ virtual const char* get_name() const noexcept = 0;
+
+ /* Throwing method for identity verification. When the check is positive
+ * an implementation should return Engine::result_t containing:
+ * - a non-null pointer to an object conforming the Applier interface.
+ * Otherwise, the authentication is treated as failed.
+ * - a (potentially null) pointer to an object conforming the Completer
+ * interface.
+ *
+ * On error throws rgw::auth::Exception containing the reason. */
+ virtual result_t authenticate(const req_state* s) const = 0;
+};
+
+
+/* Interface class for completing the two-step authentication process.
+ * Completer provides the second step - the complete() method that should
+ * be called after Engine::authenticate() but before *committing* results
+ * of an RGWOp (or sending a response in the case of non-mutating ops).
+ *
+ * The motivation driving the interface is to address those authentication
+ * schemas that require message integrity verification *without* in-memory
+ * data buffering. Typical examples are AWS Auth v4 and the auth mechanism
+ * of browser uploads facilities both in S3 and Swift APIs (see RGWPostObj).
+ * The workflow of request from the authentication point-of-view does look
+ * like following one:
+ * A. authenticate (Engine::authenticate),
+ * B. authorize (see RGWOp::verify_permissions),
+ * C. execute-prepare (init potential data modifications),
+ * D. authenticate-complete - (Completer::complete),
+ * E. execute-commit - commit the modifications from point C. */
+class Completer {
+public:
+ typedef std::unique_ptr<Completer> cmplptr_t;
+
+ virtual ~Completer() = default;
+
+ /* Complete the authentication process. Return boolean indicating whether
+ * the completion succeeded. On error throws rgw::auth::Exception storing
+ * the reason. */
+ virtual bool complete() = 0;
+};
+
+
+/* Abstract class for stacking sub-engines to expose them as a single
+ * Engine. It is responsible for ordering its sub-engines and managing
+ * fall-backs between them. Derivatee is supposed to encapsulate engine
+ * instances and add them using the add_engine() method in the order it
+ * wants to be tried during the call to authenticate(). */
+class Strategy : public Engine {
+public:
+ /* Specifiers controlling what happens when an associated engine fails.
+ * The names and semantic has been borrowed from libpam. */
+ enum class Control {
+ /* Failure of an engine injected with the REQUISITE specifier aborts
+ * the whole authentication process immediately. No other engine will
+ * be tried. */
+ REQUISITE,
+
+ /* Success of an engine injected with the SUFFICIENT specifier ends
+ * the whole authentication process successfully. However, failure
+ * doesn't abort it - there will be fall-back to following engine
+ * it the one that failed wasn't the last. */
+ SUFFICIENT,
+ };
+
+ Engine::result_t authenticate(const req_state* s) const override final;
+
+protected:
+ void add_engine(Control ctrl_flag, const Engine& engine) noexcept;
+};
+
+} /* namespace auth */
+} /* namespace rgw */
+
#endif /* CEPH_RGW_AUTH_H */