data becomes inactive. This is ideal for mutable data (e.g., photo/video
editing, transactional data, etc.).
-- **Read-proxy Mode:** This mode will use any objects that already exist
- in the cache tier, but if an object is not present in the cache the request
- will be proxied to the base tier. This is useful for transitioning from
- ``writeback`` mode to a disabled cache as it allows the workload to function
- properly while the cache is drained, without adding any new objects to the
- cache.
+- **Read-proxy Mode:** This mode will use any objects that already
+ exist in the cache tier, but if an object is not present in the
+ cache the request will be proxied to the base tier. This is useful
+ for transitioning from ``writeback`` mode to a disabled cache as it
+ allows the workload to function properly while the cache is drained,
+ without adding any new objects to the cache.
+
+A word of caution
+=================
+
+Cache tiering will *degrade* performance for most workloads. Users should use
+extreme caution before using this feature.
+
+* *Workload dependent*: Whether a cache will improve performance is
+ highly dependent on the workload. Because there is a cost
+ associated with moving objects into or out of the cache, it can only
+ be effective when there is a *large skew* in the access pattern in
+ the data set, such that most of the requests touch a small number of
+ objects. The cache pool should be large enough to capture the
+ working set for your workload to avoid thrashing.
+
+* *Difficult to benchmark*: Most benchmarks that users run to measure
+ performance will show terrible performance with cache tiering, in
+ part because very few of them skew requests toward a small set of
+ objects, it can take a long time for the cache to "warm up," and
+ because the warm-up cost can be high.
+
+* *Usually slower*: For workloads that are not cache tiering-friendly,
+ performance is often slower than a normal RADOS pool without cache
+ tiering enabled.
+
+* *librados object enumeration*: The librados-level object enumeration
+ API is not meant to be coherent in the presence of the case. If
+ your applicatoin is using librados directly and relies on object
+ enumeration, cache tiering will probably not work as expected.
+ (This is not a problem for RGW, RBD, or CephFS.)
+
+* *Complexity*: Enabling cache tiering means that a lot of additional
+ machinery and complexity within the RADOS cluster is being used.
+ This increases the probability that you will encounter a bug in the system
+ that other users have not yet encountered and will put your deployment at a
+ higher level of risk.
+
+Known Good Workloads
+--------------------
+* *RGW time-skewed*: If the RGW workload is such that almost all read
+ operations are directed at recently written objects, a simple cache
+ tiering configuration that destages recently written objects from
+ the cache to the base tier after a configurable period can work
+ well.
+
+Known Bad Workloads
+-------------------
+
+The following configurations are *known to work poorly* with cache
+tiering.
+
+* *RBD with replicated cache and erasure-coded base*: This is a common
+ request, but usually does not perform well. Even reasonably skewed
+ workloads still send some small writes to cold objects, and because
+ small writes are not yet supported by the erasure-coded pool, entire
+ (usually 4 MB) objects must be migrated into the cache in order to
+ satisfy a small (often 4 KB) write. Only a handful of users have
+ successfully deployed this configuration, and it only works for them
+ because their data is extremely cold (backups) and they are not in
+ any way sensitive to performance.
+
+* *RBD with replicated cache and base*: RBD with a replicated base
+ tier does better than when the base is erasure coded, but it is
+ still highly dependent on the amount of skew in the workload, and
+ very difficult to validate. The user will need to have a good
+ understanding of their workload and will need to tune the cache
+ tiering parameters carefully.
Setting Up Pools